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ABSTRACT

Hoang, T.C.; O’Leary, M.J., and Fotedar, R.K., 0000. Remote-sensed mapping of Sargassum spp. distribution around
Rottnest Island, Western Australia, using high-spatial resolution WorldView-2 satellite data. Journal of Coastal
Research, 00(0), 000–000. Coconut Creek (Florida), ISSN 0749-0208.

Satellite remote sensing is one of the most efficient techniques for marine habitat studies in shallow coastal waters,
especially in clear waters where field observations can be easily carried out. However, such in situ observations have
certain limitations: they are time consuming, have a limited ability to capture spatial variability, and require an
interdisciplinary approach between marine biologists and remote-sensing specialists. The main objective of this study
was to survey and map Sargassum beds around Rottnest Island, Western Australia, through a combination of high
spatial resolution WorldView-2 imagery, using a validated depth invariant index model for water-column correction, and
in-field observations. The combination of field survey data and four classification methods resulted in highly accurate
classification outcomes that showed the distribution patterns of Sargassum spp. around Rottnest Island during the
austral spring season (October 2013). Overall, the minimum distance and Mahalanobis classifiers yielded the highest
overall accuracy rates of 98.32% (kappa coefficient, j ¼ 0.96) and 98.30% (j ¼ 0.96), respectively. The K-means
classification method gave the lowest accuracy percentage of 42.50% (j¼ 0.22). Thus, the primary results of this study
provide useful baseline information that is necessary for marine-conservation strategic planning and the sustainable
utilization of brown macroalgae resources around the Western Australian coast.

ADDITIONAL INDEX WORDS: Brown macroalgae, satellite remote sensing, coastal habitat mapping.

INTRODUCTION
The marine brown algae Sargassum spp. is an ecologically

important genus that has a worldwide distribution and is

especially dominant in tropical and shallow subtropical waters

(Hanisak and Samuel, 1987; Mattio and Payri, 2011; Mattio et

al., 2008). As a living renewable resource, Sargassum spp. also

has economic value, including potential use in medicines,

fertilizer, and biofuel or energy resources and as a carbon

offset, whereby it has the ability to both fix and sequester

carbon dioxide from the atmosphere and distribute it among

the different layers of the ocean (Aresta, Dibenedetto, and

Barberio, 2005; Gellenbeck and Chapman, 1983; Hong, Hien,

and Son, 2007). As such, there is an increasing need to map the

density and spatial distribution of Sargassum beds to better

quantify the total biomass of this resource.

Marine habitat mapping is usually undertaken using ground

surveys and direct visual observations, side-scan sonar, and

free diving. All of these techniques are extremely time

consuming, expensive, and often unfeasible for large areas

(Fearns et al., 2011; Komatsu et al., 2002; Tecchiato et al.,

2011). A more cost-effective method that is often employed is

satellite remote-sensing imagery (SRSI). It requires fewer field

surveys, and with the cost of imagery decreasing with

concurrent improvements in spatial and temporal resolution,

there has been a rapid increase in the use of SRSI for various

marine-mapping applications.

The SRSI method has been successfully applied for mapping

marine habitats in shallow coastal waters, especially in clear

waters with good light penetration, where it is easy to carry out

field observations (Green et al., 2000). A range of satellite

imagery tools have been used for mapping the spatial and

temporal distribution of macroalgae and their associated

habitats, including the Medium Resolution Imaging Spectrom-

eter (Gower et al., 2005), IKONOS (Andréfouët, Zubia, and

Payri, 2004; Sagawa et al., 2008, 2010, 2012a; Stumpf,

Holderied, and Sinclair, 2003), Satellite Pour l’Observation de

la Terre 2/4 (Casal et al., 2011b; Hau, Son, and Mai, 2009),

Land Satellite (Vahtmäe and Kutser, 2007), the Compact High

Resolution Imaging Spectrometer/Project for On-Board Auton-

omy (Casal et al., 2011a), and the Advanced Land Observing

Satellite–Advanced Visible and Near Infrared Radiometer type

2 (ALOS–AVNIR-2; Phauk et al., 2012; Sagawa et al., 2012b;

Tin, Tuan, and Son, 2009).

The recent launch of the commercial WorldView-2 (WV-2)

satellite has further increased the spatial and spectral

resolution of SRSI, with images with a 0.5-m spatial resolution

for the single panchromatic band (450–800 nm) and a 2-m

resolution for the eight multispectral bands. In addition to the

four standard colors: blue, green, red, and near-infrared 1, WV-
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2 includes four new colors, i.e. coastal band (400–500 nm),

yellow band (585–625 nm), red edge (705–745 nm), and near-

infrared 2 (860–1040 nm), which are particularly useful for

coastal ecosystem studies (DigitalGlobe Staff, 2013; Updike

and Chris, 2010).

The WV-2 satellite has been effectively used to map

submerged aquatic vegetation, sea grass, and macroalgae since

2010 (Cerdeira-Estrada et al., 2012; Chen et al., 2011;

Maheswari, 2013; Midwood and Chow-Fraser, 2010; Seoane,

Arantes, and Castro, 2012; Soo-Chin and Chew-Wai, 2012).

However, no systematic study into the utility of WV-2 imagery

for the remote sensing of macroalgae has been performed,

particularly of Sargassum spp. Fearns et al. (2011) reported the

application of a hyperspectral remote-sensing model for coastal

substrate mapping around Rottnest Island and along the

Western Australian (WA) coast, using airborne hyperspectral

sensor HyMap data, which was collected along shallow areas of

the WA coast during April 2004. Harvey (2009) also used

hyperspectral remote sensing in the study of Rottnest Island’s

substrate habitats. No studies have used multispectral satellite

remote sensing to map marine habitats in general or to map

canopy macroalgae along the WA southwest coast. Therefore,

assessing the distribution of Sargassum beds using high

spatial resolution images from the WV-2 satellite in this study

could be considered the first such approach.

On the shallow subtidal and intertidal reefs around the WA

coast, Sargassum spp. form a dominant brown macroalgae

group that shows strong seasonal variation (Kendrick and

Walker, 1991). The highest biomass and density of reproduc-

tive thalli are recorded in spring (September to November;

Kendrick, 1993; Kendrick and Walker, 1994). According to

Kendrick (1993), Sargassum spinuligerum in the subtidal zone

has an increased density of vegetative thalli from autumn

(March–May) to winter (June–August). Sargassum spinulige-

rum reproduces in spring (September–November) and summer

(December–February), when it reaches the greatest biomass.

In this study, we obtained high-resolution satellite imagery in

spring (October 2013) that aimed to capture the highest

biomass and density of Sargassum spp. surrounding Rottnest

Island.

The main objective of this study was to test the utility and

ability of WV-2 imagery in the mapping, monitoring, and

classification of Sargassum beds and associated habitats

around Rottnest Island. This was achieved through the

combination of ground truth validation and the methodological

development of image processing techniques. The present

study is expected to contribute to a better understanding of

the distribution of Sargassum beds and their potential impact

on broader ecosystem functions.

METHODS
This study integrates field observations and high spatial

resolution WV-2 imagery processing techniques to provide an

assessment of coastal marine Sargassum beds around Rottnest

Island, WA. Field observation methods included free diving,

monitoring transect lines, quantify quadrats, and underwater

photography techniques. The satellite remote-sensing process-

ing techniques are described later.

Study Area
Rottnest Island is 11 km long and 4.5 km at the widest part,

with a total area of about 1900 hectares (Figure 1). Rottnest

Island is ecologically unique because it is located at the

boundary between tropical and temperate zones, with both

temperate and tropical species coinhabiting the marine

environment (Rottnest Foundation Staff, 2014). Tropical

marine species are sustained by the Leeuwin Current, which

transports warm tropical waters south along the WA coastline.

This allows the island to host one of the southernmost coral

reefs in Australia and in the world. The island’s biodiversity is

internationally acknowledged as having a high conservation

value, consisting of mollusks, sea grasses, macroalgae, coral,

and fish species with both tropical and temperate affinities

(Rottnest Foundation Staff, 2014). Rottnest Island has become

one of the most popular destinations for holiday makers and

marine conservation in the WA region and across Australia

(Phillip, 1988). All these unique features make Rottnest Island

Figure 1. Map of the study area, Rottnest Island (328000 S, 58300 E), off the WA coast about 19 km west of Fremantle. It is one of the largest class A reserves in the

Indian Ocean.
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an ideal place to study the ecological and spatial distribution of

macroalgae in general and Sargassum spp. in particular.

Ground Truth of Sargassum Beds
Ground truth validation of SRSI was carried out using

photoquadrat snorkel surveys. A total of 98 random ground

truth points were collected along 10 transect lines that were

100 m long. Field data were collected over a 2-day trip on 21 and

22 September 2013, with two trips after classification or

validation being carried out on 24 November 2013 and 14

February 2015.

Each transect line was surveyed for species composition,

percentage cover, and thallus height of Sargassum spp. (Figure

2). Transect lines were designed to cover the major bays, points,

reefs, and sanctuaries around the island (sand, coral, and rocky

habitats), as well as to cover a range of water depths. Along

each transect line, five 0.5 3 0.5 m quadrants were randomly

placed within a 10- to 20-m distance between each quadrat at a

bottom depth ranging between 0.5 and 3.5 m. Within each

quadrat, the percentage cover of all macroalgae groups

including Sargassum spp. were measured, as well as the

length of five randomly selected Sargassum thalli for mean

canopy height (MCH), which was measured from the base to

the tip of the selected branches. The percentage cover was

calculated based on the percentage cover of macroalgae in a

quadrat. The quadrat was divided into 25 small square boxes,

with each box representing 4% of the cover. For instance, if

Sargassum covered 10 small boxes within a quadrat, it was

indicated with a 40% cover. The mean value of canopy cover for

each transect line represents data from random quadrats.

Numerous fresh Sargassum spp. were collected at these

selected study sites and were then stored in plastic bags and

transported to Curtin Aquatic Research Laboratories.

Satellite Data Acquisition
Currently, WV-2 satellite imagery is among the highest

spatial resolution commercial imagery in the world. The WV-2

satellite was launched into orbit in mid-October 2009 and was

fully operational on 6 January 2010 (DigitalGlobe Staff, 2013).

The WV-2 imagery used in this study was obtained at 023858

Greenwich mean time (GMT) on 28 October 2013. The WV-2

image was collected during the season that that has shown

historically high Sargassum spp. biomass cover in the region

(Kendrick, 1993; Kendrick and Walker, 1994). The selection of

WV-2 images was based on two key factors: (1) captured time

that coincided with high Sargassum spp. distribution periods

(late spring/early summer) and (2) the highest-quality images

during cloud-free coverage.

The WV-2 image data are composed of eight bands, six of

which are visible; the other two are near-infrared bands with a

2-m spatial resolution (Table 1). Notably, the WV-2 satellite

carries a sensor with spectral bands of the coastal band (400–

450 nm), which is capable of penetrating into the shallow water

column (DigitalGlobe Staff, 2013; Seoane, Arantes, and Castro,

2012; Updike and Chris, 2010). The WV-2 image was

georeferenced in the Universal Transverse Mercator (UTM)

World Geodetic System 1984 (WGS84), zone 50 south (50S),

which used a cubic convolution method for resampling.

WV-2 Image Preprocessing Methods
A flow chart of the analysis processes of mapping macroalgae,

other macroalgae groups, and their associated benthic habitats

using high-resolution WV-2 imagery is shown in Figure 3.

Geometric Correction
The raw WV-2 satellite images were registered in UTM-50S

and converted to geographical longitude and latitude WGS84

data. The satellite images were delivered as a level LV3D

product to ensure that they were sensor corrected, radiomet-

rically corrected, and orthorectified (DigitalGlobe Staff, 2013;

Eckert, 2012; Liang, Li, and Wang, 2012).

Converting WV-2 Data to Reflectance
Two steps are involved in the conversion of WV-2 data to

reflectance values. The first step involves converting the digital

number (DN) in the range from 0 to 255 into radiance values,

and the second step converts the radiance in watts per square

meter per steradian per micron (W m�2 sr�1 lm�1) into

reflectance values. This process requires relevant input infor-

mation, such as the distance between the sun and the earth (in

astronomical units), the day of the year (Julian date), the mean

solar exoatmospheric irradiance, and the solar zenith angle.

DN to Radiance
To convert DN values to radiance values, the gain and offset

method was used with these values from the metadata file

Figure 2. The composite image of WV-2 of Rottnest Island, WA, captured at

0249 (GMT) on 28 October 2013. It shows 100-m field survey transect lines

with ground truth locations (�) around Rottnest Island.

Table 1. Characteristics of WV-2 multispectral eight-band and

panchromatic images acquired at Rottnest Island, WA.

Imagery Parameters Multispectral

Acquired date 28 October 2013

Acquired time/local time 023858 GMT/104925 Australia/Perth

Top left coordinate 352,350.00 mE, 462,504.00 mN

Rows/columns 3974/6826

Path one swathe, 91 km2

Nadir/off-nadir Nadir/208 off-nadir

Projection/datum UTM-50S/WGS84

Processing level Ortho-Ready Standard Level 2A

Resampling method Cubic convolution

Data storage format Geo TIFF

Mean sun elevation/azimuth 65.08/45.68

Cloud cover 0%

Band and spatial resolution 2.00 3 2.00 m

TIFF ¼ tagged image file format.
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(Table 2; Chavez, 1996). The formula to convert DN to radiance

using gain and bias values is

Lk ¼ gain*DNþ offset ð1Þ

where Lk is the cell value of the satellite spectral radiance for a

given spectral band (W m�2 sr�1 lm�1); the DN is the range of 0

to 255 for a given cell; gain is the gain value for a given specific

band, and offset is the bias value for the given specific band.

This processing stage was analyzed using the WorldView

Radiance calibration toolbox in the environment for visualizing

images (ENVI) software package (Exelis, 2014).

Radiance to Top of Atmosphere Reflectance
As mentioned earlier, the distance between the sun and the

earth (in astronomical units), the day of the year (Julian date),

the mean solar exoatmospheric irradiance, and the solar zenith

angle were used to calculate reflectance (NASA, 2011). The top

of atmosphere (ToA) is the spectral radiance entering the WV-

20s telescope at an altitude of 700 km (Chander, Markham, and

Helder, 2009; Updike and Chris, 2010). The following formula

for calculating reflectance was used:

qk ¼
p:Lk:d

2=
ESUNk:cosðSZÞ ð2Þ

where qk is the unitless planetary reflectance, Lk is the

spectral radiance for a given spectral band (from Equation

(1)), d is the earth–sun distance in astronomical units (Table

3), ESUNk is the mean solar exoatmospheric irradiance for

the given spectral band, and SZ is the solar zenith angle

(extracted from metadata files). The step of converting the

radiance to ToA can be processed by calibrated radiance at

the data-specific utilities in the spectral toolbox in the ENVI

4.7 software (Exelis, 2014).

Atmospheric Correction
The WV-2 satellite spectral data were atmospherically

corrected, using the dark substrate method, to reduce haze

and other influences of atmospheric and solar illumination.

The major principle of the dark substrate method is to calculate

the mean value of deepwater pixels (Gordon and McCluney,

1975; Liang, Li, and Wang, 2012; Stumpf, Holderied, and

Sinclair, 2003). The atmospheric correction was carried out

using the dark substrate tool box in the ENVI 4.7 software

(Exelis, 2014).

Water-Column Corrections
This study used the variable depth model derived by Lyzenga

(1981) for water-column corrections and is one of the most

popular methods when using satellite remote-sensing images

for the mapping the marine coastal ecosystems. The depth

invariant index (DII) was calculated as follows:

DIIij ¼ lnðLiÞ �
ki

kj
*LnðLjÞ ð3Þ

where Li is the measured radiance of a given band i, Lj is the

measured radiance of a given band j, and ki/kj is the ratio of the

attenuation coefficient that is derived from the slope of the log-

transformed plot at numerous depths.

Figure 3. Flow chart of the analysis processes of mapping macroalgae and

canopy benthic habitats using high-resolution WV-2 imagery.

Table 2. Spectral information, spatial resolution, gain and offset, and band-averaged solar spectral irradiance of the WV-2 in Rottnest Island acquired on 28

October 2013.

Spectral Bands SB SI EB

Rottnest Island SR

Gain Offset Nadir 208 Off-Nadir

Panchromatic band 450–800 1580.8140 284.6 0.46 0.52

Eight multispectral bands

MS1—NIR1 770–895 1069.7302 98.9 0.026229 0.00 1.85 2.07

MS2—red 630–690 1559.4555 57.4 0.013780 0.00

MS3—green 510–580 1856.4104 63.0 0.026081 0.00

MS4—blue 450–510 1974.2416 54.3 0.017990 0.00

MS5—red edge 705–745 1342.0695 39.3 0.017990 0.00

MS6—yellow 585–625 1738.4791 37.4 0.017990 0.00

MS7—coastal* 400–450 1758.2229 47.3 0.017990 0.00

MS8—NIR2 860–1040 861.2866 98.9 0.017990 0.00

* From Updike and Chris (2010).

SB ¼ spectral band edges (in nanometers), SI ¼ spectral irradiance with unit (in watts per square meter per micron), EB ¼ effective bandwidths Dk (in

nanometers), SR ¼ sensor resolution (in meters), NIR1 ¼ near-infrared 1, NIR2 ¼ near-infrared 2.
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Masking
To eliminate the spectral variability that is affected by

terrestrial and deepwater areas, the vector layer of these areas

was masked to the satellite images.

Image Classification and Data Analysis
Field survey data on macroalgae distribution and abundance

were processed using the ENVI 4.7 Integrated Development

Language remote-sensing software. Four classifiers—the min-

imum distance, Mahalanobis distance, K-means, and parallel-

epiped classifiers—were chosen for this study, because they are

the most commonly used classifiers in marine coastal habitat

mapping studies to date (Andréfouët, Zubia, and Payri, 2004;

Belgiu, Drǎgut�, and Strobl, 2014; Benfield et al., 2007; Carle,

Wang, and Sasser, 2014; Ghosh and Joshi, 2014; Muslim,

Komatsu, and Dianachia, 2012). The coastal habitat around

Rottnest Island can be categorized into six classes: rocky

substrate, sandy, canopy macroalgae (Sargassum and Ecklonia

spp.), red macroalgae, sea grass, and mixed vegetation. The

whole analysis process is presented in a diagram in Figure 4,

and the scheme for habitat classification is supplied in Table 4.

Accuracy Assessment
Error matrices and Cohen’s kappa (j) were used to assess the

accuracy of the classification results. These are helpful models

to understand the accuracy of the classification scheme. The j
coefficient can be employed to assess the agreement between

classification results and reality (Congalton, 1991). Cohen’s

kappa is calculated as follows:

j ¼
N
Xr

i¼1
xii �

Xn

i¼1
ðxiþ3 xþiÞ

N2 �
Xn

i¼1
ðxiþ3 xþiÞ

ð4Þ

The producer and user accuracy indices were also calculated

for each classification result (Congalton and Green, 2009). The

producer and user accuracy indices are among the most

popular indices to evaluate classification outcomes. The

producer accuracy is an index that measures the possibility

that the classifier fit the image pixel in class A similar to the

ground truth in class A. The producer accuracy index is also

related to the errors of omission (exclusion; Congalton, 1991;

Congalton and Green, 2009). From the user perspective, the

user accuracy is an index to measure the possibility that the

classifier labeled the image pixel in class A. The overall

accuracy and the j coefficient for the four classification

techniques were also evaluated.

RESULTS
This study is the first of its kind to use WV-2 high-resolution

multispectral satellite imagery to map Sargassum spp.

distribution. Eight Sargassum spp. have been identified in

intertidal and subtidal beds around Rottnest Island. Among

these Sargassum spp., S. spinuligerum, S. distichum, and S.

podacanthum are most abundant (Kendrick, 1993). However,

because of the similarities in morphological structure, includ-

Table 3. Earth–sun distance in astronomical units.

Julian Day Distance

1 0.9832

15 0.9836

32 0.9853

46 0.9878

60 0.9909

74 0.9945

91 0.9993

106 1.0033

121 1.0076

135 1.0109

152 1.0140

166 1.0158

182 1.0167

196 1.0165

213 1.0149

227 1.0128

242 1.0092

258 1.0057

274 1.0011

288 0.9972

305 0.9925

319 0.9892

335 0.9860

349 0.9843

365 0.9833

Figure 4. The ground truth survey images taken from the study sites. (a) Sandy substrate, (b) limestone substrate, (c) Sargassum spp. habitat, (d) red

macroalgae, (e) sea grass (Amphibolis australis), (f) algae turf habitat.
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ing thallus color and length, holdfast shapes, stipe, and

primary branches (Kendrick, 1993; Mattio et al., 2008),

individual Sargassum spp. could not be distinguished or

separated spectrally. Therefore, Sargassum spp. distribution

was defined at the genus level.

Sargassum spp. Percentage Cover and Canopy Height
from Field-Survey Data

Percentage Cover of Sargassum spp. and Other
Macroalgae Groups
In the period between September and November 2013, the

spatial distribution of Sargassum spp. showed statistically

significant differences (P¼ 0.008) in percentage cover between

monitored transect lines around Rottnest Island. The highest

percentage cover of Sargassum spp. was found on the inshore

reefs at depths of 0.5 to 3.5 m in the areas around Salmon Bay,

Rocky Bay, and Armstrong Bay, with values of 61.6 6 11.5,

53.3 6 13.1, and 48.3 6 14.3%, respectively. The percentage

cover in Parakeet Bay and Green Island area was 45.9 6 24.0

and 18.9 6 10.5%, respectively. The lowest percentage cover of

Sargassum spp. was found in the Parker Point area (15 6

5.7%), and Thomson Bay had a cover of 4.3 6 0.0% (Figure 5).

For other macroalgae groups, Ecklonia sp. in particular,

statistically significant differences (P ¼ 0.041) were observed

between monitored transect lines. The greatest percentage

cover was found for Green Island, Thomson Bay, Parker Point,

and Rocky Bay, with values of 77.8 6 10.2, 59.3 6 0.0, 51.3 6

13.4, and 42.8 6 13.2%, respectively. The lowest percentage

cover of other macroalgae groups was found in the Parakeet

Bay, Armstrong Bay, and Salmon Bay, with values of 40.9 6

24.0, 36.7 6 9.4, and 17.9 6 6.4%, respectively.

Canopy Height
There were no statistically significant differences (P¼0.069)

between the monitored transect lines in terms of MCH. The

MCH of Sargassum spp. was highest along the monitored

transect line in Salmon Bay (45.5 6 4.5 cm). Armstrong Bay,

Parker Point, and Rocky Beach had MCH values of 4.9 6 40.3,

36.1 6 6.54, and 29.8 6 4.9 cm, respectively. The lowest MCH

of 25.8 6 0.6 cm was found in Green Island.

Separating Sargassum spp. and Other Macroalgae
Groups

Spectral profile analysis of the major substrate types and

biological communities around Rottnest Island showed that

there was a significant difference between limestone and sand

substrates and among Sargassum spp., Ecklonia sp., algae

turf, and sea grass communities (Figure 6). The characteristi-

cally different spectral profiles between the major substrate

types and the biological communities enable the Sargassum

spp. distribution to be mapped.

Comparing the spectral profiles of bare sand and limestone

rock, sand has higher and increasing reflectance intensity

across the 400- to 750-nm spectrum than does limestone rock,

for which the reflectance decreases after 650 nm and has peaks

at 500, 550, and 650 nm. In addition, it is rare to encounter bare

limestone rock, and the reflectance value is probably influenced

by encrusting and turf algae. The substrate reflectance

components are significantly different when compared with

the spectral reflectance of biological communities, such as

Sargassum spp., Ecklonia sp., algal turf, and sea grass (Figures

6a and b).

Sargassum and Ecklonia spp. have a similar bimodal

spectral reflectance pattern, with a first weak-intensity peak

at 600 nm and the lowest value at 650 nm, with the change of

reflection direction. The major difference between the two

species is the overall intensity: Ecklonia sp. exhibits higher

peak values of 0.05 at the 600-nm wavelength, whereas

Sargassum spp. have the highest spectral reflectance value of

0.02 at 600 nm, which has a lower peak value than for Ecklonia

sp. (Figures 6e and f).

Algae turf communities can include coralline algae, red

algae, green algae, and brown folios algae. The spectral

reflectance values of the algae turf communities on Rottnest

Island are often dictated by the coralline algae, which have a

Table 4. Scheme used for habitat classification based on ground truth data.

Class 1 Class 2 Description Ground Truth Image

Unvegetated Sandy substrate Fine sand with bared substrates Figure 3a

Limestone substrate Bared substrates or some coralline on its surface Figure 3b

Vegetated Canopy macroalgae

(Sargassum and Ecklonia spp.)

Most abundant Sargassum spp., commonly found in tidal and sublittoral

zones and mostly attached to limestone rock

Figure 3c

Red macroalgae Red algae (Gracilaria sp.) and coralline algae often found in limestone

rock, sand, and mud

Figure 3d

Sea grass Amphibolis sp. often found on sandy substrates in the sublittoral zone;

also found on gravel and firm, clay banks

Figure 3e

Algae turf Community of green, red, and brown algae Figure 3f

Figure 5. The percentage coverage and canopy height of Sargassum spp.

observed from different sites during spring 2013. Thomson¼Thomson Bay,

Parker¼Porpoise Bay (Parker Point), Green¼Green Island, Rocky¼Rocky

Bay, Parakeet¼Parakeet Bay, Salmon¼ Salmon Bay, Roland¼ Strickland

Bay (Roland Smith Memorial), Armstrong ¼ Little Armstrong Bay. Each

column shows the mean and standard error of five observed quadrats (0.5 3

0.5 m).
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high cover abundance and irradiance value peaking between

550 and 600 nm (Figure 6c).

The three main sea grass species distributed around Rottnest

Island are Posidonia sp., Amphibolis sp., and Halophila sp.,

among which Posidonia sp., and Amphibolis sp. have the most

abundant distributions. Because of the similarity of spectral

profiles in the present study, we classified all three sea grass

species into one group. These species have the highest

reflectance irradiance values between 500 and 550 nm (Figure

6d).

Spatial Distribution of Sargassum spp. from Satellite
Remote-Sensing Data

The combined results of the three-band match with red edge,

red edge, and yellow bands showed that the macroalgae beds

with a majority of Sargassum spp. were detected by yellow and

orange patterns. The following environmental and biological

factors helped to detect the Sargassum spp. bed boundaries: (1)

the beds are found in clear waters and in shallow intertidal and

subtidal zones (0.5–10 m); (2) Sargassum spp. and other brown

macroalgae (Ecklonia and Cystoseira spp.) show a preference

for rocky substrates, i.e. not sandy, which cannot be confused

with sea grass on a sandy substrate; and (3) Sargassum spp.

have different spectral characteristics compared to other

seaweed groups that are highly distinct in the high-resolution

WV-2 imagery (2 m; Figure 6).

Satellite remote-sensing WV-2 data showed the highest

densities of Sargassum spp. around Rottnest Island along the

shallow subtidal zone on limestone substrates. The area

around Green Island contained patches of high Sargassum

spp. coverage, but the distribution of Sargassum spp. in this

area was not even and was instead concentrated mainly around

fringing reefs (Figure 7). In Little Armstrong Bay and Stark

Bay areas, the distribution of macroalgae was also high and

was concentrated in large meadows on the right side and the

outside of the fringing reefs. The area had red patterns, which

supposedly symbolize submerged coral reef platforms.

Accuracy Assessment
The accuracy assessment method was employed to test four

classifiers: the minimum distance, Mahalanobis, K-means, and

parallelepiped methods. The minimum distance method pro-

duced the greatest classification accuracy results for the

seawater class followed by accuracy rates for Sargassum spp.,

sand, and coral reef of 99.8, 97.8, 81.8, and 75.5%, respectively.

The highest accuracy rates obtained by the Mahalanobis

classification method were found in the seawater class

(99.6%), followed by Sargassum spp. (98.1%), sand (80.3%),

and coral reef (78.1%). The classification results produced by

the parallelepiped classification method were 95.7% for

seawater, 99.1% for sand, 96.1% for Sargassum spp., and

7.5% for coral reef. Of the four classification methods, the K-

means method produced the lowest accuracy rates for seawater

(45.6%), Sargassum spp. (34.5%), and coral reef (0%), but

yielded the highest accuracy rate for sand (100; Table 5).

DISCUSSION
To date, no studies on the use of WV-2 images for mapping

Sargassum spp., particularly along the Australian coast, have

been performed. This study showed a high level of accuracy in

classifying Sargassum spp. using WV-2 imagery, highlighting

the utility of SRSI in mapping shallow marine environments.

The integrated study of high-resolution satellite data provides

useful and valuable information for natural resource managers

to respond to questions of seasonal change in Sargassum spp.

biomass and the typical substrate used by Sargassum spp.

(Andréfouët, Zubia, and Payri, 2004).

However, benthic habitat mapping using the object-based

and supervised classification technique is still subject to a

number of limitations, i.e. the method requires the gathering of

ground truth data. Field data collection is relatively time

consuming and expensive (Komatsu et al., 2002; Muslim,

Komatsu, and Dianachia, 2012; Vahtmäe and Kutser, 2013). In

addition, field data do not always correlate with satellite image

data because of discrepancies in spatial resolution, time lag

between photos and surveys, field survey techniques, and

effects due to the environmental conditions of data collection

(Kutser, Miller, and Jupp, 2006). In terms of ground truth, this

study found that a minimum of 10 transects with five survey

quadrats per transect, for a total survey area of approximately

20 km2, is required for a high-accuracy assessment. Moreover,

this study recommends a survey quadrat size of 0.5 3 0.5 m,

which is the standard method for general benthic habitat

mapping studies (e.g., Duarte and Kirkman, 2001; Japar,

Bandeira, and Milchakova, 2001; McKenzie, Finkbeiner, and

Figure 6. Spectral profiles of most benthic components extracted from WV-2

imagery. (a) Limestone substrate, (b) sand substrate, (c) algae turf (coralline

algae, red algae, green algae, and brown algae), (d) sea grass; (e) Sargassum

spp., (f) Ecklonia vs. Sargassum spp.
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Kirkman, 2001; Short and Duarte, 2001). We believe that this

approach returns better accuracy assessments than numerous

previous studies that merely employed the manta tow

technique for the photography of the benthic substrate

(,0.25 m2 per site; e.g., Noiraksar et al., 2014).

In addition, this study highlights the importance of under-

standing seasonal variations in Sargassum spp. biomass and

distribution before acquiring WV-2 image data. Spring was

chosen for this study, because it is when the biomass and cover

of Sargassum spp. peak in Rottnest Island. Thus, it is

Figure 7. The result of spectral math of the three red edge, red edge, and yellow bands showed the visibly observed distribution of Sargassum beds with yellow

pixels and red color for submerged reefs around the study sites. (Color for this figure is available in the online version of this paper.)
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important to understand the seasonality of Sargassum spp. so

that WV-2 imagery captures the period of highest biomass and

facilitates the mapping of Sargassum spp. There is additional

value in investigating the utility of WV-2 image data to track

and understand the seasonal variations in Sargassum spp.

biomass and distribution.

One limitation of this study is that it has yet to assess the

comparable classification results of the VW-2 pan-sharpened

and broad-spectral bands. Likewise, a potential error that

might be encountered in the study of coastal ecosystems is the

variation in the inherent optical properties (IOPs) of the water

column. For example, coastal waters are often affected by

runoff, upwelling, and water mixing, which can lead to high

concentrations of phytoplankton, inorganic particles, and

colored dissolved organic matter (CDOM). A change in the

IOPs affects both the shape and the magnitude of the

reflectance spectra (Vahtmäe and Kutser, 2013). Therefore,

further work is required to evaluate the differences in

classification results between pan-sharpened and broad-spec-

tral bands and other very high-resolution remote-sensing data

(e.g., hyperspectral images and aerial photography) and to

assess the potential effect of changing the IOP conditions.

Producer and user accuracies were employed and compared

among the four classification techniques of this study (Figure

8). The advantages of the coastal (400–450 nm) and yellow

(585–625 nm) bands were illustrated by the high classification

accuracy of these types of habitats (Table 6). These are the

unique bands that are only found in WV-2 images. With these

bands, WV-2 images can penetrate through the clear water

column and gather appropriate information about bottom

habitats in shallow waters. A similar study by Su, Liu, and

Heyman (2008) showed that in the water sector, green light

(500–600 nm) can reach a maximum depth of 15 m, red light

(600–700 nm) can penetrate to 5 m, and infrared light (700–800

nm) can reach to 0.5 m (Green et al., 2000; Su, Liu, and

Heyman, 2008). The overall classification accuracies achieved

in the present study are higher than those found by Noiraksar

et al. (2014), who mapped Sargassum beds in Chon Buri

province, Thailand, using ALOS–AVNIR-2 images. They used

minimum distance and supervised maximum likelihood clas-

sification methods, which resulted in overall accuracy rates of

67 and 69%, respectively. However, a study by Carle, Wang,

and Sasser (2014), which mapped the distribution of freshwa-

ter marsh species using WV-2 imagery, showed that maximum

likelihood classifiers delivered the highest overall classification

accuracy (75%). They also found that the coastal blue and red

edge bands played a major role in enhancing vegetation

mapping.

Comparing the classification results of this study with those

of previous studies on the Sargassum group showed that our

study results have a higher classification accuracy ratio (Table

7). This can be explained by two factors. First, as discussed

earlier, this study was evaluated source imaging at high spatial

resolution (2 m) and spectral resolution (eight bands). In

particular, the coastal band is capable of deeply penetrating

and gathering appropriate information from marine habitats.

Second, our study area (Rottnest Island, which is situated 20

km offshore) has clear ocean waters with a relatively low

influence of coastal sediments and nutrients. Consequently,

the clearness of the water column is high because of low

Table 5. Confusion matrix for WV-2 classification of Rottnest Island

Reserve using four classifiers. The accuracy assessment was based on

selected main habitats from WV-2 images.

Classes Classifiers

Test Areas/Ground Truth (%)

Seawater Sand Sargassum Coral Reef Total

Unclassified MiL 0 0 0 0 0

MaH 0 0 0 0 0

KM 0 0 0 0 0

PAR 4.3 0.9 2.9 3.3 3.9

Seawater MiL 99.8 0 0.2 0.1 70.6

MaH 99.6 0 0.1 0.3 70.4

KM 45.6 0 0.5 0.1 32.3

PAR 95.7 0 0 0.1 67.6

Sand MiL 0 81.8 0 21.2 2.0

MaH 0 80.4 0 18.5 1.9

KM 0.3 100 65.2 99.7 20.9

PAR 0 99.1 0.2 85.7 4.1

Sargassum MiL 0 0 97.8 3.2 24.4

MaH 0 0 98.1 3.2 24.5

KM 2.8 0 34.4 0.3 10.5

PAR 0 0 96.1 3.5 24.0

Coral reef MiL 0.2 18.2 2.1 75.5 3.0

MaH 0.4 19.7 1.8 78.1 3.2

KM 51.4 0 0 0 36.3

PAR 0 0.1 0.8 7.5 0.4

Total MiL 100 100 100 100 100

MaH 100 100 100 100 100

KM 100 100 100 100 100

PAR 100 100 100 100 100

MiL ¼ minimum distance, MaH ¼ Mahalanobis, KM ¼ K-means, PAR ¼
parallelepiped.

Figure 8. Validation accuracy for each habitat type from different

classifiers. (a) Producer accuracy results, (b) user accuracy. MiL¼minimum

distance, MaH¼Mahalanobis, KM¼K-means, PAR¼ parallelepiped.

Table 6. Confusion matrix of the overall accuracy of the classification maps

obtained from the WV-2 image.

Classification Methods Overall Accuracy (%) Kappa Coefficient (j)

Minimum distance 98.32 0.96

Mahalanobis 98.30 0.96

K-means 42.50 0.22

Parallelepiped 93.50 0.86
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concentrations of phytoplankton, inorganic particles, and

CDOM in the water. According to Vahtmäe and Kutser

(2013), in clear ocean waters, optical remote sensing can be

limiting at a depth of 30 m. However, the spectrum of

information that is most useful to separate the substrate

components is achieved at a depth of 5 to 6 m. Likewise,

another study in an open-sea area showed that benthic plants

cannot be identified at a bottom depth below about 5 m

(Vahtmäe et al., 2012). In this study, therefore, the detection

range of Sargassum spp. lies within the depth range from 0.5 to

3.5 m and is wholly useful spectral information. In addition, the

findings of this study agree with those of Vahtmäe and Kutser

(2013), who showed that the classification outcomes from the

object-based methods provide higher-quality benthic habitat

maps than did the spectral library method (Vahtmäe and

Kutser, 2013).

CONCLUSIONS
This study has increased understanding of the spatial

distribution of Sargassum spp. macroalgae beds around coastal

area of Rottnest Island, WA, using field survey and remote-

sensing techniques. Based on the results, we conclude that

eight-band high-resolution multispectral WV-2 satellite imag-

ery has great potential for mapping and monitoring Sargassum

beds, as well as associated coastal marine habitats. The results

are relevant for coastal marine health monitoring and

economic planning purposes on the WA coast using high-

resolution satellite imagery with large-scale coverage. Howev-

er, further study to detect the biomass of Sargassum beds,

using WV-2 in combination with in situ observation data, is

required.
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