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Abstract  

Recurrent and significant Sargassum beaching events in the Caribbean Sea (CS) have caused 

serious environmental and economic problems, calling for a long-term prediction capacity of 

Sargassum blooms. Here we present predictions based on a hindcast of 2000 – 2016 

observations from Moderate Resolution Imaging Spectroradiometer (MODIS), which showed 

Sargassum abundance in the CS and the Central West Atlantic (CWA), as well as 

connectivity between the two regions with time lags. This information was used to derive 

bloom and non-bloom probability matrices for each 1
o
 square in the CS for the months of 

May – August, predicted from bloom conditions in a hotspot region in the CWA in February. 

A suite of standard statistical measures were used to gauge the prediction accuracy, among 

which the user’s accuracy and kappa statistics showed high fidelity of the probability maps in 

predicting both blooms and non-blooms in the eastern CS with several months of lead time, 

with overall accuracy often exceeding 80%. The bloom probability maps from this hindcast 

analysis will provide early warnings to better study Sargassum blooms and prepare for 

beaching events near the study region. This approach may also be extendable to many other 

regions around the world that face similar challenges and opportunities of macroalgal blooms 

and beaching events. 

1. Introduction 

Since 2011, massive Sargassum beaching events have occurred in the Caribbean 

Islands, causing significant environmental and economic problems [Gower et al., 2013; 

Maurer et al., 2015]. Similar beaching events have also been reported in western Africa and 

northern Brazil [Oyesiku & Egunyomi, 2014; Széchy et al., 2012]. Although pelagic 

Sargassum provides an important ecological function in the open ocean [Council, 2002; 

Rooker et al., 2006; Witherington et al., 2012; Lapointe et al., 2014; Doyle and Franks, 

2015], large amount of Sargassum deposition on beaches can negatively impact the local 

economy, ecology, and environment [Siuda et al., 2016; Hu et al., 2016]. Usually, massive 

Sargassum deposition on beaches has to be physically removed [Webster and Linton, 2013; 

Partlow and Martinez, 2015], which represents a management burden as there is often no 

advanced warning on the amount of Sargassum or the timing of beaching events.  

These technical obstacles may be overcome through mapping Sargassum abundance 

in the Caribbean Sea (CS) and the Atlantic Ocean, and through numerical modeling to predict 

Sargassum growth and transport. While recent advances in satellite remote sensing have 

made the former possible [Gower et al., 2006; Gower and King, 2011; Gower et al., 2013; 

Hu, 2009; Wang and Hu, 2016], predicting Sargassum blooms in certain locations of the CS 

requires a thorough understanding of Sargassum biology (e.g., growth rate), which may then 
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be coupled with physical forcing (wind- and current-driven transport and dissipation) to 

model Sargassum transport and abundance. Unfortunately, this capacity is currently 

unavailable due to lack of sufficient measurement and modeling efforts. Herein, based on 

remotely sensed Sargassum abundance maps, we propose a practical way to predict the 

likelihood of blooms and non-blooms in the CS. The objective is to provide bloom 

probability matrices for the CS in May – August based on conditions in the Atlantic in 

February through hindcast of historical observations; these probability matrices will then 

provide early warning information by end of February of every year in the future to assist 

scientific understanding and management planning (e.g., field surveys, physical removal, 

tourism, etc.).   

2. Data and Methods 

2.1 Prediction concept 

The prediction is based on the Sargassum distribution maps covering the Central West 

Atlantic (CWA) and CS derived from Moderate Resolution Imaging Spectroradiometer 

(MODIS) observations using a recently developed method [Wang and Hu, 2016]. Briefly, 

MODIS data collected from 2000 to 2016 were processed to Rayleigh corrected reflectance 

(Rrc), which was used to derive an alternative Floating Algae Index (AFAI) for each 1-km 

pixel [Hu, 2009] that detects the red-edge reflectance of floating vegetation. An automatic 

feature extraction algorithm was developed to extract Sargassum features after masking 

clouds, cloud shadows, and other artifacts. A linear unmixing scheme was used to determine 

the sub-pixel coverage, which was then aggregated to 0.5º×0.5º grids in each calendar month, 

resulting in monthly mean Sargassum area density (% cover) maps. While Figure 1 shows 

two sample maps for March 2014 and August 2014, respectively, more maps are presented in 

an animation in the supplemental materials, in Figure 2 for bloom years, and in Figure S2 for 

non-bloom years. 

Sargassum blooms appear to develop first in a CWA hotspot region in February – 

March. Then, following the dominant currents and winds, Sargassum in the CWA is 

transported to the CS in later months where it can develop into a massive bloom. Based on 

the connectivity and time lag between blooms in the two regions, we hypothesize that blooms 

and non-blooms in the CS can be predicted from the CWA hotspot region.  

2.2 Selection of the hotspot region and bloom threshold 

A hotspot was determined from the multi-month mean using a threshold (Figure S1), 

where a rectangular region (0º - 8ºN, 45º - 29ºW) was selected to cover the objectively 

selected area. For the CS (8º - 23º N, 88º - 59º W), the region was divided into 1º× 1º grids to 

evaluate the bloom conditions in each grid.  

To determine the bloom threshold for each location, mean conditions between 2000 

and 2010 (i.e., “non-Sargassum years”) were used as the reference. For the CWA hotspot, 

mean and standard deviation of Sargassum density of all February months between 2000 and 

2010 were first calculated. Then, for any February in the later years of 2011 – 2016, if the 

mean Sargassum density was greater than the previously calculated mean plus 2 standard 

deviations, that February was considered to be a bloom (B) month, otherwise it is a non-

bloom (N) month (Fig. 1d). Likewise, mean and standard deviation of Sargassum density for 

the CS for each month of May – August were calculated separately from the 2000 – 2010 

MODIS data. Then, for each 1
o
 grid, if Sargassum density during a certain month in 2011 – 

2016 was greater than its corresponding mean plus 2 standard deviations, the grid was 

considered to be a bloom for that month, otherwise a non-bloom (Fig. 1c).  
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2.3 Bloom and non-bloom statistics and prediction accuracy  

First, bloom and non-bloom statistics for the CS and the CWA hotspot region were 

established. Then, the prediction of bloom or non-bloom in the CS was carried out in a 

hindcast mode as follows: if there was a bloom (or non-bloom) in the CWA hotspot region in 

February, it was predicted that there would be a bloom (or non-bloom) in each grid of the CS 

in each month of May – August of the same year. Finally, the accuracy of the prediction was 

evaluated using the above bloom and non-bloom statistics with a suite of statistical measures.  

Specifically, for each 1
o
 grid in the CS, time series of blooms and non-blooms for 

each month of May – August between 2007 and 2016 were first generated using the bloom 

threshold of that month. An example for the month of August is shown in each row of the top 

left table in Figure 3 part II.  Similarly, time-series of blooms and non-blooms in the CWA 

hotspot region in the month of February were also generated using the bloom threshold of 

February for the CWA hotspot region (top left table in Figure 3 part II). The month of 

February was selected to be the “predicting” month.  

The accuracy of these predictions was evaluated using several statistical measures 

including the user’s accuracy, producer’s accuracy, overall accuracy, and kappa coefficients 

[Story and Congalton, 1986; Congalton, 1991]. The equations of the accuracy assessment, as 

well as examples for 4 locations in the CS, are listed in the tables of Figure 3. The overall 

accuracy tells the overall agreement between prediction and ground truth (i.e., observation), 

and it is defined as the sum of all correct predictions (diagonal elements in the tables) divided 

by the total number of observations. For a specific grid, XNB (pink color in all tables) is the 

number of observations when the CWA hotspot shows non-bloom and therefore predicts non-

bloom in the CS but the CS grid shows a bloom. XNN (blue), XBN (yellow), and XBB (green) 

are defined in the same way. The user’s accuracy of bloom prediction is defined as the 

number of correct bloom prediction (XBB) divided by the total number of bloom prediction 

(XBN + XBB). The user’s accuracy of non-bloom prediction is defined as the number of 

correct non-bloom prediction (XNN) divided by the total number of non-bloom prediction 

(XNN + XNB). The producer’s accuracy of bloom or non-bloom prediction is defined similarly, 

but with the total number of observations (in the CS) instead of total number of predictions 

used in the denominator (Figure 3).  

Kappa analysis was also preformed to all 1
o
 grids to calculate the kappa coefficient 

[Cohen, 1960; Congalton, 1991], which measures the difference between the actual 

agreement (i.e., the overall accuracy) and the chance agreement (i.e., expected agreement). In 

this study, kappa coefficient measures the overall difference between the proposed prediction 

and a random guess. A kappa coefficient of 0 means that there is no difference between 

prediction and random guess. Larger kappa indicates better prediction performance. 

Conditional kappa, which can test the individual category agreement [Coleman, 1966; Light, 

1971], was also calculated to help interpret the prediction accuracy. Conditional kappa 

measures the difference between prediction for a certain category (i.e. bloom or non-bloom) 

and random guess for that category. 

 

3. Results 

From 2007 to 2016, 5 years were classified as bloom years (2011 – 2016 except 

2013), and 5 years were classified as non-bloom years (2007 – 2010, 2013) (Figure S3). 

Figure 4 shows the summary results of hindcast prediction accuracies for each month of May 

– August.  



Confidential manuscript submitted to Geophysical Research Letters 

 

© 2017 American Geophysical Union. All rights reserved. 

Generally, the conditional kappa and user’s accuracy show consistent results in terms 

of overall trend and spatial patterns, but kappa-like measures are less interpretable than user’s 

accuracy. For example, in the top left image of Figure 4 (prediction of bloom in the CS in 

May), the bottom right corner (near Trinidad) shows a value of 0.60 (orange color). This 

means that if a May bloom is predicted for this location at the end of February, the odds of a 

bloom developing there are 60%. Likewise, if a May bloom is not predicted, the odds of a 

correct prediction are >90% (second image set in Figure 4). Because the interpretation of 

user’s accuracy for both bloom and non-bloom predictions is straightforward, the user’s 

accuracy is recommended for future predictions.  

The user’s accuracy for non-bloom prediction (mostly > 90%) is much higher than for 

bloom prediction (mostly < 50%). This is because most 1
o
 grids in the CS did not have 

blooms between May - August (Figure 2) regardless of the February conditions in the CWA 

hotspot. For this reason, for bloom predictions the producer’s accuracy and overall accuracy 

are much higher than the user’s accuracy, but for non-bloom predictions the user’s accuracy 

is much higher than the producer’s accuracy. These observations may vary between regions 

and months. For example, for the month of August and near the Lesser Antilles Islands, the 

user’s accuracy of bloom prediction can reach > 80%. The producer’s accuracy for bloom 

prediction in this region is also high, suggesting that when a bloom occurs in August near the 

Lesser Antilles Islands there is likely a bloom in the CWA hotspot region back in February of 

the same year. In general, prediction accuracy decreased in the western CS regardless of the 

accuracy measures, due to a longer distance between the western CS and the bloom source 

(i.e., the CWA hotspot region).  

From these hindcast evaluations, the following findings may be summarized for the 

prediction of blooms and non-blooms in the CS between May and August using conditions in 

the CWA hotspot region in February of the same year:  

1) predicting a non-bloom is much more reliable than predicting a bloom when measured 

with the user’s accuracy; 

2) there is a large spatial gradient in the user’s accuracy map in bloom predictions, 

where accuracy in the eastern CS is significantly higher than in the western CS; 

3) a similar spatial gradient exists in the overall accuracy map for both bloom and non-

bloom predictions, but overall accuracy for the entire CS is much higher than user’s 

accuracy for just bloom prediction; 

4) in all predictions, most 1
o
 grids showed kappa coefficient and conditional kappa 

significantly higher than 0.0, indicating that these predictions have significantly 

higher success rates than random guesses; 

5) the accuracy maps shown in Figure 4 may be used as guides for future predictions of 

bloom and non-bloom conditions in the CS between May and August, where the 

predictions can be made at end of February of the same year. 

 

4. Discussion 

4.1 Coincidence or physics driven  

In nature, many phenomena can be highly correlated without a causal effect. The 

prediction above is based on the fact that if a bloom occurs in one place (CWA), it occurs at a 

later date in another place (CS), and the same is true for non-bloom. Then, is it simply a 

coincidence? 
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The MODIS observations, as shown in the GIF animation in the supplemental 

materials, suggest that this correlation is beyond coincidence but driven by physics. 

Specifically, Sargassum in the CS did not initiate locally, but from the CWA following the 

prevailing winds and currents. This observation is supported by the back-tracking results 

through ocean modeling [Doyle and Franks, 2015; Franks et al., 2011, 2014, 2016; Johnson 

et al., 2012]. Therefore, the prediction is supported by physics, even though the method is 

based on statistics. 

Because of this, the method provides a simple yet effective way to predict Sargassum 

bloom occurrence in the CS with relatively high accuracy, especially in the windward Lesser 

Antilles Islands. For a non-bloom prediction, the prediction accuracy is nearly 100% for most 

locations in the CS. This is because even during bloom years most waters still have low 

Sargassum density. Overall, a non-bloom prediction is more reliable than a bloom prediction 

in the CS, while the accuracy of a bloom prediction for most windward Lesser Antilles 

islands can reach > 80% in August. 

4.2 Prediction sensitivity  

In this work data between 2007 and 2016 were used to estimate prediction accuracy 

because the numbers of bloom and non-bloom years are balanced during this period. If this 

period was extended to all MODIS years before 2007, the user’s accuracy for bloom 

prediction would not be affected (Figure S4) because there was no bloom year before 2007. 

However, because of the extra non-bloom years included, the producer’s accuracy for a non-

bloom prediction increased significantly while the user’s accuracy for a non-bloom prediction 

only increased slightly (it is already near 100%). For the same reason, the overall accuracy 

and kappa coefficient both increased due to the increased number of successful non-bloom 

predictions. A test was conducted to see whether the month of January – April could be used 

as the prediction months. Table S1 shows that except for January, all months showed 

identical bloom conditions in the CWA hotspot, leading to identical prediction accuracy. 

Therefore, the month of February was determined to be the best prediction month, since it 

can provide at least 2 months of lead time for local management agencies in the Caribbean. 

The work presented here used a binary classification of a bloom or a non-bloom 

scenario. In reality, blooms will vary in size and intensity. When blooms were further divided 

into small, medium, and severe blooms according to their intensity, the overall prediction 

accuracy was lower (Figure S5). However, for a local researcher or manager, knowledge of 

the bloom/non-bloom probability may be more important than knowledge of the bloom 

intensity. Therefore, the focus of this study is on the binary classification. 

4.3 Applications and potential limitations  

Although the statistics-based prediction is supported by physics, because the forcing 

terms (winds, currents, Sargassum growth rate, [Webster and Linton, 2013; Carpenter and 

Cox, 1974; Lapointe, 1996; Lapointe et al., 2014; Ardron, 2011; Brooks, 2016; Maréchal et 

al., 2017]) are not explicitly included in the prediction, the prediction may only be applicable 

to future years when these forcing terms are similar to the hindcast years used here. The 

fundamental question is, are the years in this study “normal” years so the prediction can be 

applied to future “normal” years?  

Time series of the area-averaged surface winds and currents from Windsat and current 

data from Ocean Surface Current Analyses Real-time (OSCAR), respectively, are plotted in 

the supplemental Figure S6. No significant changes have been observed since 2011 when the 
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first massive Sargassum bloom event occurred in the CS. Thus, if future years show winds 

and currents encompassed by those shown here, the prediction should be applicable. 

However, the prediction is not on beaching events but on bloom conditions in the CS. 

It is unknown whether the predictions correlate well with spatial-temporal distributions of 

beaching events in the CS because this information is not readily available. An online search 

using the keywords “Sargassum”, “Caribbean”, and “Inundation” resulted in 5 news reports 

in 2011, 2 in 2012, 0 in 2013, 10 in 2014, 28 in 2015, and 2 in 2016, which qualitatively 

agree with the inter-annual changes in the observed bloom conditions in the CS. In reality, 

whether or not a bloom will end up on beaches depends on local winds and currents, which 

can only be studied through high-resolution modeling or a combination of nearshore daily 

observations and currents/winds. For example, the Sargassum Early Advisory System 

(SEAS, [Webster and Linton, 2013]) used periodic Landsat observations for short-term 

predictions of potential beaching events, while Maréchal et al. [2017] used MODIS daily 

imagery for the same predictions. Nevertheless, as Sargassum blooms are unlikely to 

diminish in the coming years, the simple forecast system developed here will provide timely 

information to the Caribbean residents and management agencies on the potentials of 

Sargassum blooms with several months of lead time. Decision makers can benefit from this 

prediction in several aspects, including improved planning for cleanup, commercial use, and 

tourism [Hu et al., 2016]. For example, at the time of this writing, a Sargassum bloom was 

found in the CWA hotspot region in February 2017; thus we predict blooms in the eastern CS 

in summer 2017. The accuracy of this prediction will be assessed during summer 2017, while 

the prediction will be sent to interested parties (e.g., NOAA CoastWatch Caribbean and Gulf 

of Mexico node, Caribbean Coastal Ocean Observing System) through emails to provide 

early alerts.  

4.4 Broad impacts 

The study region included the CS and CWA, yet both Ulva (a type of green 

macroalgae) and Sargassum macroalgae blooms appear to have increased in recent years all 

around the world [Smetacek and Zingone, 2013; Qi et al., 2016; Wang and Hu, 2016]. These 

include those in the Yellow Sea and East China Sea as well as waters off West Africa and 

north Brazil. Once time-series of bloom characteristics and cross-region connectivity are 

established, the approach developed here could be extended to those regions. The forecasting 

capacity not only provides early warning to management agencies but also has significant 

implications for studies of ocean biogeochemistry and ocean ecology as researchers now have 

at least several months of lead time to prepare for coordinated cruise surveys. Furthermore, 

Sargassum can also be used to extract various products from animal food, biofuel, to plastics, 

and the U.S. Department of Energy is interested in improved use of Sargassum to make these 

products (https://vimeo.com/193881420). One of the potential challenges of such endeavors 

is to find the Sargassum “hotspots” for harvesting at the right time and right location, and the 

work presented here can help to address this challenge. Indeed, Sargassum blooms in recent 

years have provided both challenges and opportunities to many research and environmental 

groups [Hu et al., 2016], and a forecasting system represents one significant step towards 

addressing these challenges. 

5. Conclusion 

A preliminary forecast system has been developed to predict Sargassum blooms in the 

Caribbean Sea in May – August from bloom conditions in a hotspot region in the Central 

West Atlantic in February. This is through hindcast analysis of the Sargassum distributions 

derived from MODIS observations between 2000 and 2016 using a recently developed 
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algorithm. Although the prediction is from statistics of bloom and non-bloom occurrence, it is 

supported by the physical mechanism to drive Sargassum transport and biological factors to 

drive Sargassum growth. Accuracy assessment using historical MODIS observations showed 

that bloom occurrence in July and August near most of the Lesser Antilles islands can be 

accurately predicted (up to 80%) at the end of February. Prediction of non-bloom occurrence 

in most of the CS can be up to 100%. While the data record used to test the prediction is 

rather short (2000 – 2016, with only 5 bloom years in between) and the prediction requires 

similar environmental forcing factors in future years as in the past years, the forecast system 

for the first time provides a decision support tool to help prepare and make research and 

management plans with several months of lead time.  
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Figure 1. Sargassum area density (% cover) maps in March 2014 (a) and August 2014 (b) 

derived from MODIS observations [Wang and Hu, 2016], suggesting Sargassum transport 

from the CWA to the CS following dominant winds and currents (white arrow). The green 

box and orange box delineate the CS and CWA hotspot regions, respectively.  (c) and (d) are 

Sargassum density thresholds used to determine blooms and non-blooms in the 1
o
×1

o 
grids of 

the CS and in the CWA hotspot region, respectively. Vertical bars represent standard 

deviations of each month of 2000 - 2010 (non-bloom years). The bloom threshold was 

determined as the mean plus 2 standard deviations. For example, in July, if the density in any 

grid in the CS is > 5.2×10
-3

%, it is considered as a bloom in that grid; in March, if Sargassum 

density in the CWA hotspot is > 1.3×10
-4

%, it is considered as a bloom.  
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Figure 2. Monthly mean Sargassum density maps for bloom years between 2007 and 2016 

(2007-2010 and 2013 are non-bloom years). Land and coastlines are masked in black and 

white, respectively. A value of 0.05 indicates 0.05%. The red dashed box marks the February 

maps used for the prediction.  
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Figure 3. Part I: Illustration of statistical measures to assess prediction accuracy. “B” 

represents bloom, and “N” represents non-bloom. Part II: Demonstration of the process to 

generate the estimated accuracy maps. Top left: bloom and non-bloom statistics in the CWA 

hotspot in February (top rows) and in 4 locations in the CS in August (bottom rows). Right: 

accuracy assessment when conditions in February in the CWA hotspot are used to predict 

conditions in each of the four 1
o
 grids in the CS. The overall prediction accuracy in August 

for the entire CS is shown in the color coded map, with the 4 sample locations (P1 – P4) 

annotated.  
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Figure 4. Estimated hindcast prediction accuracy of blooms and non-blooms in the CS 

between May and August of 2007 - 2016, based on the bloom conditions in the CWA hotspot 

region (Figure 1a) in February. Further interpretations of these maps can be found in the text. 
 

 


