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A satellite remote-sensing multi-index approach to discriminate pelagic 23 

Sargassum in the waters of the Yucatan Peninsula, Mexico 24 

Abstract 25 

Recently, the need for quantitative information on the spatiotemporal distribution of 26 

floating macroalgae, particularly Sargassum spp., has grown because of blooms of these 27 

species in the Gulf of Mexico and Caribbean Sea. Remote sensing is one of the most 28 

frequently used tools to assess pelagic Sargassum distribution. The purpose of this study 29 

was to implement a methodological approach to detect floating algae in an efficient and 30 

replicable manner at a moderate cost. We analyzed Landsat 8 imagery, from which we 31 

calculated four vegetation indices and one floating-algae index to implement a supervised 32 

classification, together with the bands 2 and 5, using the Random Forest algorithm. The 33 

analysis was performed monthly from 2014 to 2015 for the northeastern Yucatan Peninsula, 34 

Mexico, with a total of 91 analyzed images. The quantitative performance metrics of the 35 

classifier (overall, Kappa and Tau) were greater than 80%, whereas bands 2 and 5 as well as 36 

atmospherically resistant vegetation index made the greatest contributions to the 37 

classifications. During summer 2015, more than 4,000 ha of Sargassum coverage per image 38 

were observed, which was substantially greater than that over the rest of the period. This 39 

approach constitutes a transferable alternative for the systematic detection of Sargassum, 40 

which enables a quantitative semi-automated time series comparison. 41 

Keywords: Sargassum, macroalgae, Landsat, Random Forest, remote sensing 42 

Introduction 43 

The pelagic Sargassum genus include two species (from now on abbreviated as spp., as it is 44 

referred to abbreviate more than one unspecified species) of Phaeophyta macroalgae that are 45 

irregularly distributed in configurations whose lengths range from 50 cm to several kilometres 46 

(Butler et al. 1983). Sargassum is widely distributed along the Gulf of Mexico and the Caribbean 47 

Sea, where biological assemblages of high economic and ecological value to Mexico, the United 48 

States, and Cuba are found (Thiel and Gutow 2005). 49 
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The marine communities composed of Sargassum and its occupants are part of intricate 50 

trophic chains and host different commercial fish species during their early stages of 51 

development, e.g., Coryphaena, Abudefduf, and Caranx (South Atlantic Fishery Management 52 

Council 2002; Vandendriessche et al. 2007), as well as endangered species and other species of 53 

high ecological value, such as sea turtles and pelagic seabirds (Mansfield and Putman 2003; 54 

Moser and Lee 2012; Witherington, Hirama, and Hardy 2012). 55 

Although Sargassum represents important ecological and economic interests, the 56 

anomalous and excessive growth of this macroalga has been recorded in the Gulf of Mexico, the 57 

Caribbean Sea, and the Western Central Atlantic (WCA) since 2006 (Gower et al. 2006; Gower 58 

and King 2008; Gower and King 2011; Gower, Young, and King 2013; Wang and Hu 2016). 59 

This excessive growth has generated massive off-shore Sargassum shoals that negatively affect 60 

coastal towns, especially the tourism and service sectors as well as certain coastal ecosystems and 61 

endangered species (Smetacek and Zingone 2013; Gavio, Rincón-Díaz, and Santos-Marín 2015; 62 

Maurer, De-Neef, and Stapleton 2015; Schell, Goodwin, and Siuda 2015; van-Tussenbroek et al. 63 

2017). 64 

The first studies of Sargassum communities were conducted from oceanographic cruises 65 

in the Atlantic Ocean (Stoner 1983; Huffard et al. 2014). As a technological alternative, remote 66 

sensing has been used as a major tool in studies of Sargassum worldwide, including its detection 67 

at the surface of the water and on the sea bed (less than 10 m in depth) (Hu, Hardy, and Hocberg 68 

2015; McCarthy 2016; Wang and Hu 2016, Xing et al. 2017). 69 

The initial studies that employed remote sensing techniques used low spatial resolution 70 

multispectral imaging sensors with high temporal resolution to assess algae blooms in the Yellow 71 

Sea (Hu 2009), the Gulf of Mexico (Gower and King 2011), the northern region of the Gulf of 72 
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Mexico (specifically, the area affected by the 2010 oil spill) (Hu, Hardy, and Hochberg 2015; Hu 73 

et al. 2016), and the WCA (Wang and Hu, 2016) 74 

In this context, it is important to understand the spatial-temporal dynamics of floating 75 

Sargassum lines to design and implement strategies to address anomalous events as well as to 76 

advance our understanding of their origins, under which physical and biological conditions they 77 

occur, and the amount of Sargassum expected on the beach, among other aspects. 78 

In the Gulf of Mexico and the Lesser Antilles, formal initiatives have been aimed at 79 

providing near real-time information on the distribution patterns of pelagic Sargassum using 80 

Moderate Resolution Imaging Spectroradiometer (MODIS) data with long term and detailed 81 

temporal coverage (Optical Oceanography Laboratory, University of South Florida). With regard 82 

to the north of the Gulf of Mexico in particular, one initiative uses medium resolution satellite 83 

images (Landsat) (Webster and Linton 2013) to provide semi-quantitative information products 84 

to assess and quantify spatial and temporal patterns. 85 

In Mexico, specifically in Quintana Roo (Mexican Caribbean), different strategies have 86 

been implemented to address this issue. However, baseline data on the spatial-temporal patterns 87 

and dynamics of this macroalgae in adjacent waters are lacking.  88 

The objective of this study was to expand existing methodological approaches through the 89 

implementation of a low cost and replicable approach with a relatively low computing demand to 90 

detect and monitor pelagic Sargassum in the waters of the Yucatan Peninsula, Mexico. This study 91 

will enable the analysis of spatial-temporal dynamics of pelagic Sargassum to inform natural 92 

resource managers as well as planners to act in case of contingencies. 93 

In the next sections, we present a methodological approach for the detection and 94 

assessment of Sargassum in a quantitative, robust, and semi-automated manner along with an 95 

evaluation of its accuracy. 96 
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Materials and Methods 97 

Study area 98 

For this study, we selected the northeastern region of the Yucatan Peninsula, Mexico because it is 99 

the major entry point of water into the Gulf of Mexico. This region is known for the Cabo 100 

Catoche seasonal upwelling and is characterized by strong sea currents as well as associated 101 

biological and ecological processes (Merino 1997; Sheinbaum et al. 2002; Schmitz et al. 2005; 102 

Rousset and Beal 2010). In addition, the area is located to the north of the beaches in the state of 103 

Quintana Roo, Mexico (van Tussenbroek et al. 2017), where large Sargassum shoals were 104 

recorded in 2014 and 2015 (Figure 1). As Hu et al. (2016) recognized, knowledge about the 105 

abundance of Sargassum in the eastern region of the Gulf of Mexico is limited; therefore, 106 

studying the Sargassum of that region is strategic for generating information about this 107 

macroalga. 108 

Image selection and preprocessing 109 

Given the size of the Sargassum lines reported in this area, which MODIS or the Medium 110 

Resolution Imaging Spectrometer (MERIS) cannot detect, and considering the advances achieved 111 

by similar studies using Landsat (Hardy 2014; Hu et al. 2016), we used Landsat 8 (L8) 112 

Operational Land Imager (OLI) images with a 30 m spatial resolution. We selected four scenes 113 

for the images covering the area of interest (paths 018 and 019 as well as rows 044 and 045), took 114 

the first image acquired each month for the four scenes along the studied period, and built a set of 115 

91 L8 images for the years 2014 and 2015 (five images were missed from the source archive at 116 

the time of this search in July 2016). 117 
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During this period of time, a Sargassum bloom was reported in the Caribbean (Maurer, 118 

De-NEef & Stapleton, 2015; Azanza-Ricardo and Pérez-Martín, 2016). Therefore, by selecting 119 

this time frame, we ensured that Sargassum would be present in at least some of the images, 120 

thereby allowing the implementation of this approach and the spatial-temporal assessment of the 121 

massive bloom of the macroalga along the coasts of the Mexican Caribbean. 122 

Satellite images were downloaded from the United States Geological Survey (USGS, 123 

2016), and all were subject to an atmospheric correction (see Hu, 2004 and GRASS Development 124 

Team, 2017). 125 

A land mask was applied to each image based on the Global Administrative Area 126 

polygons (Hijmans et al. 2016). Pixels whose configuration in the quality band (QB) indicated 127 

the presence of clouds, cirrus, snow, and ice were masked so that only the pixels whose QB 128 

configuration indicated possible water and unaffected pixels remained active (USGS, 2014). 129 

Vegetation indices 130 

After a literature review (and given the basic recommendations by Hu, Hardy, and Hochberg, 131 

2015), a set of five vegetation indices with the potential to contribute to Sargassum detection was 132 

defined: Normalized difference vegetation index (NDVI), Atmospherically resistant vegetation 133 

index (ARVI), Soil-adjusted vegetation index (SAVI), Enhanced vegetation index (EVI) and 134 

Floating algae index (FAI) (Equations (1)-(6) in Table 1). 135 

To make these calculations using the L8 images, we used band 2 (0.452 – 0.512 µm) as 136 

Blue (B), band 4 (0.636 – 0.673 m) as Red (R), band 5 (0.851 – 0.879 m) as Near InfraRed 137 

(NIR), band 6 (1.566 – 1.651 m) as Short Wave InfraRed (SWIR) (Table 1). 138 
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Supervised image classification 139 

For each image, a classification model was generated based on the selected training sites using a 140 

Random Forest algorithm (Liaw and Wiener 2002). This classifier consists of a combination of 141 

classification trees, in which each one is generated from a set of random sites independently 142 

sampled from the entry set, and each tree casts a single vote for the most popular type of entry 143 

vector (Breiman 1999; Pal 2005). This machine learning algorithm is regarded as one of the most 144 

efficient algorithms in terms of prediction accuracy, speed, and efficiency for large databases. 145 

Although the individual contribution of each index is combined during the classification, in terms 146 

of detecting Sargassum aggregations, we assumed that the multiple criteria that this algorithm are 147 

given with the different indices is an advantage. Furthermore, the algorithm is also well 148 

recognized because it offers an intuitive approach to assess the importance of each independent 149 

variable used in the model (Crisci, Ghattas, and Perera 2012). 150 

Different remote sensing studies have used Random Forest because it provides greater 151 

accuracy than other machine learning algorithms (Akar and Güngör 2012). In this regard, 152 

Random Forest has been used for acoustic data (Lucieer et al. 2012), to map marsh vegetation 153 

(van Beijma, Comber, and Lamb 2014), and even as a prediction model for harmful algal blooms 154 

(Kehoe et al. 2012), among other applications. This commercial algorithm is accessible to any 155 

person interested in detecting floating Sargassum; hence, the replicability of this method is 156 

ensured. 157 

The classification inputs were the five vegetation indices obtained, i.e., NDVI, ARVI, 158 

SAVI, EVI and FAI, combined with bands 2 (blue, 0.452 - 0.512 µm) and 5 (SWIR, 0.851 - 159 

0.879 µm). All of the data contributed by the indices individually and as a set as well as 160 

additional information derived from the contrast between the NIR and the blue bands were used 161 
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to distinguish floating algae (Hu 2009, Xing et al. 2017). For the classification parametrization, 162 

we set the number of variables in the random subset at each node (m) as 3, and the number of 163 

trees in the forest (k) as 1,000, with replacement of samples at each step. 164 

To provide the classifier with a wider spectral context of the analyzed image, we included 165 

training sites for the other objects present in the scene; hence, we expected the classifier to have 166 

more chances of correctly classify Sargassum. Hence, sets of training sites were visually defined 167 

(polygons in vector format) for the classes of Sargassum, clouds, blue sea (open sea), sea with 168 

sun glint, and cloud shadows (shadows) based on the different composites from the generated 169 

indices (three at a time, one for each channel) and a false color composite (bands 5,2,1) of the 170 

images.  171 

We obtained between 38 and 123 training sites (polygons) per image (mean 69), where 172 

33.0% of them were labeled Sargassum. The latter training sites varied from four to 100 pixels in 173 

size depending on the cover extension of the Sargassum in each image. The rest of the classes 174 

were trained with a maximum of 250 pixels each. 175 

With these training sites, we expected to capture the spectral variation in the classes 176 

within each assessed individual image, considering the influence on the image that different data 177 

acquisition conditions had (solar light angle of incidence, sensor angle, and even the presence of 178 

mist) (Wang and Hu 2016). Bands 5 and 2 as well as the index values were extracted from these 179 

polygons for their corresponding images.  180 

The original individual classifications with five categories were reclassified to contain 181 

only the Sargassum class, which was subsequently converted into polygons in vector format so 182 

that the rest of the classes were omitted. In addition, rasters were generated with the probability 183 

of each pixel of being Sargassum. We also obtained values of the general errors in the 184 
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classification determined via cross validation as well as scores of the importance of the variables 185 

to the general classification and for the Sargassum class exclusively. 186 

A graphical assessment of the importance values for the five indices and bands under 187 

consideration was conducted to determine the main decision tree criteria for the five classes, 188 

particularly for the Sargassum class. 189 

Supervision and quantification of Sargassum 190 

As part of the supervision process, the polygons identified as Sargassum were subjected to visual 191 

quality control based on the visual compositions used before (i.e., the indices and bands). During 192 

the supervision process, errors of commission were corrected by the operator; however, omission 193 

errors were not corrected, primarily because of the significant manual digitization effort that this 194 

procedure entails. The Sargassum polygons obtained after this visual supervision were 195 

considered the final detection in each image.  196 

The Sargassum probability (i.e., a raster of probabilities derived from the classification) 197 

was analyzed, both in the original classification and in the final detection to determine the range 198 

of probability values over which greater intervention was required to correct errors of 199 

commission. 200 

The quantification is reported as hectares of Sargassum detected for each month and year. 201 

Sargassum classification accuracy  202 

A quantitative validation of the final Sargassum polygons was performed. Based on the analysis 203 

of the probability of each polygon being Sargassum, the probability quartiles were defined as 204 

tiers in the distribution of the verification sites in a uniform, stratified scheme. A total of 120 205 

verification points per image were defined (i.e., 30 points per probability quartile), and the 206 
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verification points were randomly distributed among the pixels in each quartile. 207 

The validation design included only the classified images with detected Sargassum. If no 208 

Sargassum was observed within a scene, then it was excluded from the validation. A person 209 

external to the supervision of the classification categorized the validation points (in vector 210 

format) using the composites of false color indices with the bands 5, 2, and 1 as a reference. The 211 

points were labeled Sargassum or non Sargassum, and both the probabilities of Sargassum class 212 

and the final classification were invisible to the person who performed the validation. 213 

A confusion matrix was generated from the polygons obtained from the final 214 

classification (Sargassum or non Sargassum), and the class assigned to the verification (a = true 215 

positives, b = false positives, c = false negatives and d = true negatives) (Green et al. 2000; 216 

Anderson, Lew, and Peterson 2003). 217 

In addition, the quantitative measures of the intrinsic performance of the classifier were 218 

calculated (overall, omission error, and commission index) (Anderson et al. 2003) as were the 219 

Kappa and Tau accuracy metrics (Green et al. 2000; see Equations (7)-(11) in Table 2). 220 

Results 221 

Maps of the monthly distribution and coverage of pelagic Sargassum were generated for the 222 

northeast Yucatan Peninsula using the above described semi-automated detection protocol and 223 

Landsat 8 OLI images for 2014 and 2015. 224 

Image analysis 225 

Of the 91 analyzed images, 54 (60.0%) showed evidence of Sargassum; thus, they were 226 

classified. Likewise, 31 (34.0%) did not show evidence of the presence of Sargassum, whereas 227 

the remaining six (6.0%) exhibited high cloud coverage (> 80.0%), making detection impossible. 228 
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A gap of five images exited for the studied area and period that were not available in the USGS 229 

archive. 230 

Bands 2 and 5 along with the ARVI had the greatest importance, on average, in the 231 

decision making of the classification trees (Figure 2(a)). Importantly, this participation is relative 232 

to all classes considered in the classification of each image and that their variability range was 233 

wide with an interquartile range (50.0% of the data) that overlapped with the inputs from the rest 234 

of the indices. On the other hand, when we only considered the Sargassum class, NDVI and 235 

SAVI were the indices with the greatest importance (Figure 2(b)). 236 

The average global classification accuracy value derived from the cross validation as part 237 

of the Random Forest classification process was 97.7% (± 2.2%). 238 

The supervision of the direct result of the classification resulted in the elimination of 239 

polygons erroneously labeled Sargassum in 60.0% of the classified images. This circumstance 240 

occurred most frequently in cloud edges and cloud shadows. 241 

Distribution of the Sargassum probability values 242 

In general, for the distribution of the Sargassum assignment probability values in a complete 243 

scene, we noted that a great proportion of the set of pixels in the image corresponded to low or 244 

null probabilities. A large proportion of pixels also showed a 0.1 to 10.0% probability of being 245 

Sargassum, and only a few of these were finally classified as such. In contrast, we found pixels 246 

with a high probability of being Sargassum (> 90.0%) but that also showed greater probabilities 247 

of being other classes; hence, these pixels were not classified as Sargassum. 248 

Most errors of commission detected in the supervision after classification were found in 249 

the group of pixels with a Sargassum assignment probability between 10.0% and 80.0%. When 250 

assessing the distribution of the probability values to be assigned as Sargassum in the polygons 251 
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removed during supervision, we observed that the highest percentage of changes (after the 252 

elimination of the errors of commission) occurred in pixels with Sargassum probability values 253 

between 10.0% and 70.0%; thus, a greater confusion was accompanied by a lower assignment 254 

probability. However, most pixels with a high probability of being Sargassum (> 80.0%) were 255 

maintained as such after supervision; thus, few errors of commission occurred at those 256 

probability levels.  257 

In terms of the distribution of the Sargassum probability values of the pixels that 258 

effectively remained as such (distributed in light gray in Figure 3(a)), 50.0% of the pixels 259 

presented classification probability values between 65.0% and 100.0%. 260 

Figure 3(b) shows the effect of removing the polygons wrongly classified as Sargassum; 261 

the average of probabilities increased, and the interquartile range decreased. Furthermore, 50.0% 262 

of the data were distributed between 77.0% and 98.0% probabilities of being classified as 263 

Sargassum. This pattern was consistent for all of the classified scenes, and the highest incidence 264 

of refinement was found in pixels with medium probability values, which also increased the 265 

centrality of the probability of the pixels correctly classified as Sargassum. 266 

Quantification of Sargassum  267 

The temporal distribution pattern of Sargassum in the area differed for 2014 and 2015. In 2015, 268 

Sargassum coverage was four times larger than that in 2014, which is quantitative evidence of its 269 

massive growth in this region (Figures 4 and 5).  270 

In 2014, Sargassum drifts were scattered throughout the study area with higher 271 

concentrations along the continental slope. In 2015, the aggregation of large amounts of 272 

Sargassum was evident, and it followed the pattern of surface flows, particularly along the edge 273 
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of the continental shelf. On the continental shelf, the presence of Sargassum was minimal in 2014 274 

but was significant in 2015. 275 

In 2014, two periods of greater Sargassum coverage were recorded; the first occurred in 276 

August, and the second occurred in November and December with values ranging from 1,000 to 277 

4,000 ha for each event, respectively. In 2015, the first evidence of floating Sargassum 278 

aggregations of approximately 1,000 ha in size were observed in March; later that year, however, 279 

the maximum macroalga accumulations were recorded as more than 6,000 ha of Sargassum 280 

detected during July and August (Figure 5). During September and October of that same year, the 281 

amount of Sargassum decreased considerably with a coverage of less than 1,000 ha. 282 

During the periods of maximum Sargassum aggregation (November and December 2014) 283 

as well as in July and August 2015, the paths along which the maximum values were detected 284 

diverged. The maximum values were first found in path 18 and later in path 19, suggesting a 285 

response to the direction of the surface currents in the area. 286 

Regarding the temporal differences in Sargassum coverage between months, sudden 287 

changes were noted from November 2014 to January 2015 and from July to September 2015, 288 

during which the differences in the area of Sargassum coverage between months was greater 289 

(Figure 5). 290 

Of the Sargassum coverage values detected in 2014 and 2015, increases between 50.0% 291 

(August 2014) and up to 400.0% (June-July 2015) were recorded for a single scene, providing 292 

evidence about the anomalous nature of the event recorded in 2015. 293 

Sargassum classification accuracy  294 

Based on the confusion matrix for the 2,040 assessed validation points, different metrics were 295 

estimated to judge the efficiency of the proposed approach to detect floating algae with L8 296 
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images (Table 3). 297 

The global performance value of the classification was 93.4%, which includes the errors 298 

of omission and commission. The rate of omission or false negatives was 19.0%. Thus, the 299 

percentage of detected Sargassum was underestimated by the classifier (Table 2). Finally, the rate 300 

of errors of commission, or false positives, was 2.7%. 301 

The classification accuracy metrics showed values greater than 80.0%, which represents a 302 

satisfactory level of performance using the methodological approach presented here. With a 303 

Kappa value of 81.2%, it is assumed that the classification process avoided this percentage of 304 

errors relative to the errors that a completely random classification would have generated. In 305 

addition, the Tau value indicates that 97.5% more pixels were correctly classified than the result 306 

expected from a random classification. These accuracy metric values support the calculated 307 

Sargassum coverage estimates.  308 

Discussion 309 

Based on the available literature and to the best of our knowledge, this study is the first to assess 310 

Sargassum via remote sensing using an integrated multi index approach as well as the first to 311 

document the 2015 Sargassum bloom along the Yucatan Peninsula. 312 

Quantification of Sargassum in waters of the Yucatan Peninsula 313 

The major increases in Sargassum coverage over the study area were recorded during autumn-314 

winter 2014 and summer 2015. For the greater part of 2014, no large Sargassum aggregations 315 

were detected, but from August to December of that year, a considerable increase in coverage 316 

was recorded. Wang and Hu (2016) reported the same pattern for the WCA, and an increase in 317 

Sargassum coverage was noted again in the first quarter of 2015. The months of the greatest 318 
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Sargassum presence in our study area were from June to September of 2015, which coincided 319 

with the same period reported for the WCA, with remnants recorded until November of that year. 320 

The temporal coincidence of the greater Sargassum coverage values in our study area and 321 

the WCA suggests that these Sargassum lines in the Mexican Caribbean did not originate in 322 

southern regions of the Caribbean Sea because blooming apparently occurred at the same time. In 323 

contrast, the bloom might have originated closer to our study region, with the peculiarity that the 324 

coverage of Sargassum in the assessed paths showed a time lag. Specifically, the eastern path 325 

ranked first in terms of the increase in coverage, followed by the neighboring path to the west, 326 

which followed the direction of the surface currents and the prevailing winds (i.e., from east to 327 

west; Enríquez, Mariño-Tapia, and Herrera-Silveira 2010; Reyes-Mendoza et al. 2016).  328 

Regarding of the use of Landsat imagery to detect Sargassum coverage, we related our 329 

results to those of Hu et al. (2016); although our study differs in the years analyzed, it was the 330 

only study that used the same input data until today. They detected Sargassum in the area 331 

affected by the Deep-Water Horizon oil spill of 2010 in the northern region of the Gulf of 332 

Mexico, and they reported a coverage of thousands of hectares for the first trimester of the year. 333 

This order of magnitude of Sargassum coverage is consistent with our results. 334 

Accuracy of Sargassum detection 335 

Importantly, a significant percentage of actual floating Sargassum corresponds to patches of 336 

minimal size, which are difficult to detect via remote sensing data such as Landsat (with a 30 m 337 

spatial resolution). For a pixel to be defined as Sargassum using indices such as NDVI and FAI, 338 

Hu, Hardy, and Hochberg (2015) reported that it should at least cover between 1.0% and 2.0% of 339 

the area. For that pixel to be differentiated from other floating objects and detected as Sargassum, 340 

it should cover between 20.0% and 30.0%. 341 
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The presence and location of Sargassum lines are in constant motion; therefore, collecting 342 

field data to calibrate multispectral images for their detection is highly complex and costly. 343 

However, the current approach supports training site selection using index composites as well as 344 

the probability of each pixel of being classified as Sargassum. We used these by-products as an 345 

input to obtain a quantitative criterion for the interpretation of the resulting classification and the 346 

accuracy assessment. This methodological approach is the first to present metrics (overall 347 

performance, omission error, commission index, Kappa, and Tau) of its accuracy to detect 348 

Sargassum using L8 images, thereby providing a baseline for comparing with other detection 349 

methods. 350 

In general, the values of all metrics indicated satisfactory performance, and it is worth 351 

noting the rate of omission errors (19.0%), which was highly relevant to this approach because 352 

Sargassum omissions were not corrected. Therefore, this value was directly estimated from the 353 

results of the classifier. The rate of this type of error was higher than that of the errors of 354 

commission (about 2.0%), which were corrected. 355 

Regarding the Kappa and Tau metrics, Green et al. (2000) suggested acceptable accuracy 356 

values between 60.0% and 80.0% for handling and reference purposes; these values were fully 357 

realized in this study. In addition, these authors also expressed the need for greater accuracy 358 

when performing quantitative assessments such as a change detection analysis, for which they 359 

suggest values of approximately 90.0%. 360 

Some areas that were not classified as Sargassum using our methodological approach 361 

might have been omitted because the surface coverage of Sargassum within a pixel was minimal. 362 

Thus, the spectral response did not reach the Sargassum detectability values and might have been 363 

confused with another object in the image. In the supervision of the Sargassum classification 364 
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directly derived from the classification process, the areas suspected of presence were not added, 365 

thereby underestimating the area covered. 366 

In terms of the general errors of omission, when using Landsat images, Hu, Hardy, and 367 

Hochberg (2015) reported uncertainty values about 30.0% when estimating Sargassum coverage. 368 

This uncertainty value and a correction factor they applied were obtained for the northern Gulf of 369 

Mexico where the characteristics of the lines of Sargassum differed from those in the Caribbean. 370 

Therefore, it is not well established whether this factor can be accurately applied to our known 371 

underestimations; however, it represents a reference for studies using remote sensing to detect 372 

Sargassum. 373 

The application of vegetation indices to detect floating Sargassum involved the inevitable 374 

risk of detecting other floating objects that have a radiometric response in the same range of the 375 

light spectrum (Hu, Hardy, and Hochberg 2015, Xing et al. 2017). In particular, spectral 376 

confusion of Sargassum with Syringodium and bacteria of the genus Trichodesmium has been 377 

reported. Other objects, which certain indices might detect in the same radiometric range as 378 

Sargassum, correspond to floating litter. However, Hu, Hardy, and Hochberg (2015) 379 

acknowledge that no large aggregations of litter have been reported in the Gulf of Mexico. 380 

As mentioned above and recognized by Hu et al. (2016) and Wang and Hu (2016), it is 381 

difficult to assert that all of the objects detected in this study correspond to Sargassum. 382 

Considering the data in the available literature, however, this study shares the same theoretical 383 

basis of the red edge in the reflectance of vegetation in the NIR, which has proven useful for the 384 

detection of floating vegetation, including Sargassum.  385 

Furthermore, considering that Trichodesmium bacteria strongly respond to the blue band 386 

(Hu, Hardy, and Hochberg 2015) and that the indices generated from the red edge play a more 387 

important role in classification than band 2 (blue), the contribution of this band is not so 388 
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dominant to suggest the significant expression of Trichodesmium, even when its importance is 389 

relevant. Moreover, these bacteria are likely rare in this region; therefore, Syringodium is one of 390 

the objects with the greatest probability of being confused with Sargassum. 391 

However, these same authors reported a high reflectance of Syringodium in bands 2 and 5 392 

of the Landsat images. Considering that the response of pixels detected as Sargassum in the 393 

spectral window of the image derived from the ratio between bands 2 and 5 had lower average 394 

values than the red-edge indices (i.e., FAI, NDVI, SAVI, and ARVI), it is assumed that most of 395 

the pixels classified as Sargassum are in fact Sargassum. 396 

In addition, the dates during 2015 in which the greatest amounts of floating objects 397 

assumed to be Sargassum were detected coincide with the arrival dates of these macroalgae along 398 

the coasts of the Mexican Caribbean as well as with the temporal patterns detected by Wang and 399 

Hu (2016) in the WCA. In this context, a high probability exists that most objects identified as 400 

Sargassum were correctly classified. 401 

Multi-index methodological approach  402 

Reported specialized image processing for Sargassum detection addresses several issues 403 

regarding satellite image conditions, although they have great potential for automatization. Wang 404 

and Hu (2016) implemented an effective procedure to detect Sargassum using MODIS images to 405 

systematize the detection process for thousands of images. Their approach was highly effective 406 

and has many applications and uses. However, it requires a level of technical specialization and 407 

computer equipment that could be important constraining factors for researchers with limited 408 

resources and decision makers who require access to simple and reliable evaluation strategies. 409 

These groups have the greatest need for attainable approaches that enable the assessment of the 410 

presence and distribution of lines of floating macroalgae in their study areas.  411 
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Given the need to know the spatial-temporal patterns and the origins of algal blooms, we 412 

proposed an approach to detect Sargassum in a low cost, efficient and technologically viable 413 

alternative that considers different indices that can detect floating vegetation. Because our 414 

approach includes the use of well known, standardized, and effective informatics tools (e.g., a 415 

machine learning family classifier; Akar and Güngör, 2012), it is more advantageous and 416 

convenient. As with every supervised classification algorithm, the contribution of diverse inputs 417 

constitutes one of the most robust aspects of the development of decision trees. Therefore, seven 418 

different sources were used for Sargassum detection in contrast to a single source. 419 

Several studies have sought to define threshold values for certain indices (NDVI, FAI, 420 

NDVI, among others) to identify pelagic Sargassum (Hu 2009; Gower and King 2011; Gower, 421 

Young, and King 2013; Hu, Hardy, and Hochberg 2015; Hu et al. 2016, Xing et al. 2017). 422 

Nevertheless, several conditions such as fog, haze, and sun glint are present in the L8 images that 423 

do not allow the direct optimal separability of Sargassum from the remaining objects in the 424 

image; thus, this multi-index supervised classification was applied. 425 

Most vegetation indices used in this approach have been tested for use to detect 426 

Sargassum and other floating macroalgae (Hu 2009; Wang and Hu 2016; Xing and Hu 2016) and 427 

are considered viable alternatives given the scarcity of hyperspectral products that decisively 428 

resolve the radiometric confusion of Sargassum with other objects. In general, the indices 429 

assessed in this study showed a narrower range of values in the Sargassum pixels than the bands 430 

alone, which suggests that the indices more directly captured the objects assumed to be 431 

Sargassum in the images.  432 

The similarity of the index values between the classes was evident, as were the variations 433 

in the conditions within each of the assessed scenes. In this sense, the proposed approach makes 434 

use of the separability of all of the indices combined with the classification algorithm working in 435 
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a seven-dimensional space to address each situation represented by an image in a particular way 436 

(Figure 6). 437 

Regarding the separability of the Sargassum class, the most important indices were NDVI 438 

and SAVI, followed by band 2. Although the contribution of the latter to the classification of 439 

objects other than Sargassum suggests that this element is not diagnostic per se, it can be used to 440 

detect Sargassum in association with another band such as band 5. 441 

The functionality of this methodological approach to detect pelagic Sargassum was 442 

corroborated along with the possibility of transference to and implementation in any other area of 443 

interest. Standard remote sensing as well as geographic information system applications and 444 

analyses were used, and they can be replicated using a wide range of spatial analysis software. 445 

This method further represents a consistent, accessible, and versatile alternative approach that can 446 

be adopted and implemented in other regions and by other groups.  447 

The adopted methodological approach includes both automated stages and supervision 448 

conducted by operators. Moreover, relatively low cost tools are used to implement algorithms for 449 

image processing and classification. We sought a cost-effective balance in which the supervision 450 

added value to the final result. The cost is minimal given that a quantitative coverage can be 451 

obtained without efforts to digitize the Sargassum coverage, a task that can be arduous and is 452 

subject to human error. In addition, this supervision is aided by diagnostic tools; therefore, only a 453 

minimal level of experience is required to identify the objects in the images.  454 

Users must be previously trained to correctly identify Sargassum in satellite images using 455 

color composites as a reference (Wang and Hu, 2016). Following our approach, index composites 456 

are incorporated into the identification task, enabling a clearer and more precise definition of the 457 

training sites and the supervision of results. White pixels indicate a high value for the three 458 

indices, thereby allowing a color spectrum to distinguish Sargassum from its context.  459 
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As Wang and Hu (2016) documented, the intervention of a Sargassum observation 460 

operator constitutes an alternative to improve detection accuracy. Although this method implies 461 

an additional cost, it might be significantly more cost-effective than manually digitizing 462 

Sargassum polygons (e.g., Xing et al. 2017), thereby increasing the analytical capacity in terms 463 

of the number of images.  464 

In this study, personnel inexperienced with satellite image analysis were successfully 465 

trained to define the training sites. With the help of false color composites, calculated indices, 466 

and probabilities obtained using the classification algorithm, the polygons erroneously assigned 467 

as Sargassum by the classifier were identified and eliminated. The cost involved in this operation 468 

was profitable in terms of correcting and increasing the level of accuracy of the images with a 469 

minimum time investment because false assignments were minimal and well identified. The 470 

performance of the people trained to classify the images was verifiable through the accuracy 471 

metrics of the images. 472 

Conclusions 473 

This approach and its associated results represent an alternative methodological frame for the 474 

systematic and transferable detection of Sargassum. 475 

We found that combining vegetation indices in a classification process is a more robust 476 

way to detect Sargassum in L8 images than using a single index. In addition, although the levels 477 

of confusion between the object of interest, the Sargassum, and other objects such as clouds, 478 

cloud shadows, and sun glint constitute an important challenge, this approach proposes a semi-479 

automated classification process that provides the user with a margin to adjust to the particular 480 

conditions of each image. 481 
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These results are the first such assessment of the southeastern part of the Gulf of Mexico 482 

and the Mexican Caribbean. This quantification represents a baseline reference and it provides a 483 

further understanding of Sargassum coverage and dynamics. 484 

Given the possibility that similar massive blooms of this macroalga will occur in the 485 

future, this method represents an easily transferable approach that will support the monitoring 486 

and management of coastal areas affected by anomalous events. 487 

The present work assessed Sargassum lines in Mexican territorial waters from the Gulf of 488 

Mexico to the Mexican Caribbean in 2014 and 2015; however, the approach used in this study is 489 

applicable to any region or moment of interest for which L8 images are available. 490 
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 650 

Figure 1. Study area located in the northeastern region of the Yucatan Peninsula, México (a). 651 

Black-lined polygons delimit the assessed scenes, and in a red square the small area represented 652 

in (b); (b) Sargassum driftlines are indicated by a black arrow, as seen in a color composition 653 

(bands 5, 2, 1) from a satellite image from Path 18 Row 45, July 2015. 654 

 655 

 656 

Figure 2. The importance of each of the indices and bands used for the supervised classification 657 

(Random Forest) of 54 Landsat images for all classes considered (a) and for the Sargassum class 658 

(b). The importance of a variable for a random forest model is estimated by looking at how much 659 

prediction error increases when the testing data for that variable is permuted while all others are 660 

left unchanged (Liaw & Wiener, 2002).  661 
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 663 

Figure 3. (a) Distribution of the frequencies of probability values of being Sargassum for the 664 

pixels in the whole scene (black) as well as the values for the pixels classified as Sargassum by 665 

the algorithm (dark gray) and those correctly assigned as Sargassum and refined by supervision 666 

(light gray). (b) The central tendency and dispersion values are presented for the three sets of 667 

pixels analyzed. Pixels with a probability lower than 0.1% were removed.  668 
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 670 

Figure 4. Spatial distribution of Sargassum drifts (Sargassum spp.) in the northeastern region of 671 

the Yucatan Peninsula, Mexico during 2014 and 2015. Each frame shows a four-month 672 

composite of all of the Sargassum detected during the correspondent period. Year 2014 is on the 673 

left side, and year 2015 is on the right side. (a) January to April, 2014; (b) May to August, 2014; 674 

(c) September to December, 2014; (d) January to April, 2015; (e) May to August, 2015; (f) 675 

September to December, 2015.For presentation purposes, the lines that delimit the polygons are 676 

1-point thick.  677 
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 678 

Figure 5. Temporal pattern of the cumulative coverage of the Sargassum drift lines in the study 679 

area in 2014 and 2015. [Figure in grayscale] 680 
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 681 

Figure 6. A simplified 3D representation of the informational elements and multi-index criteria 682 

provided for the classification algorithm (Random Forest) used in the proposed classification 683 

approach, which maximizes the separability between classes. 684 
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Table 1. Synthesis of the vegetation index calculi and the parameters used for the equations. 686 

Vegetation index Equation Parameter Author 

NDVI NDVI = (𝜌NIR - 𝜌R) / (𝜌NIR + 𝜌R)     Equation (1) 𝜌 = atmospherically corrected 

reflectance band; NIR: Near 

infra-red band, R: Red band; B: 

Blue band;  

 

Guyot and Gu 1994 

ARVI ARVI = (𝜌NIR - 𝜌R,B) / (𝜌NIR + 𝜌R,B)     Equation (2) 
 

Kaufman and Tanré 

1992 

SAVI SAVI = [(𝜌NIR – 𝜌R) / (𝜌NIR + 𝜌R + L)] (1 + L)     

Equation (3) 

L = 0.5, is the context-dependent 

adjustment factor, which in this 

case is assumed to be the marine 

water in which Sargassum 

floats. 

Huete 1988 

EVI EVI = G (𝜌NIR – 𝜌R) / (𝜌NIR + 𝐶1,R – 𝐶2,B + L)     

Equation (4) 

G is a gain factor (2.5); C1,R 

(6.0) and C2,B (7.5) are the 

aerosol resistance coefficients. 

 

USGS, 2017 

FAI FAI = 𝜌𝑟𝑐,𝑁𝐼𝑅 – 𝜌′
rc,NIR

     Equation (5) 

 

Where 

 𝜌′rc,NIR= 𝜌rc,R + (𝜌rc,SWIR - 𝜌rc,R) (𝜆NIR - 𝜆R) / (𝜆SWIR - 

𝜆R)     Equation (6) 

𝜌′rc,NIR is the base reflectance in 

the NIR band derived from a 

linear interpolation between the 

red (R) and the short-wave 

infrared (SWIR). 

Hu 2009 

 687 

 688 

 689 

 690 
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Table 2. Quantitative metrics used in this study (adapted from Anderson et al. 2003) (Green et al. 2000) and their values calculated for 692 

all of the validated images with objects classified as Sargassum in the study area (N = 17). 693 

Metric Equation Parameter 

Overall performance (correct 

classification rate) 

(a + d) / (a + b + c + d)     Equation (7) a = true positives; 

b = false positives; 

c = false negatives; and, 

d = true negatives. 

Omission error (false negative 

rate) 

c / (a + c)     Equation (8) 

Commission index (false positive 

rate) 

b / (b + d)     Equation (9) 

Kappa 𝐾 =  
𝑁 ∑ 𝑋𝑖,𝑖−∑ (𝑋𝑖,+ 𝑋+,𝑖)𝑟

𝑖=1
𝑟
𝑖=1

𝑁2−∑ (𝑋𝑖,+∙𝑋+,𝑖)𝑟
𝑖=1

     Equation (10) 

 

where r is the number of rows in the confusion matrix; 

𝑋𝑖,𝑖 is the number of observations in row i and column i; 

𝑋𝑖,+ y 𝑋+,𝑖 are the marginal totals of row i and column i, 

respectively; and N is the total number of validation 

points. 

Tau 𝜏 =  
𝑃o−𝑃𝑟

1−𝑃𝑟
, where 𝑃𝑟 = (

1

𝑁2) ∑ 𝑛𝑖  𝑋𝑖
𝑀
𝑖=1      

Equation (11) 

 

where 𝑃𝑜 is the global accuracy; M is the number of 

classes; i is the ith class; N is the total number of 

validation points; 𝑛𝑖 is the total of row i; and 𝑋𝑖 is the 

diagonal value of class i. 

694 



 

35 

 

Table 3. Confusion matrix developed from the points defined to quantitatively validate the 695 

Sargassum classifications. 696 

Classification 

Semi-Automated 

Visual Validation  

Sargassum Non Sargassum  

Sargassum 392 42 434 

Non Sargassum 92 1,514 1,606  

 484 1,556 2,040 

 697 
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