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A B S T R A C T

Since 2011, tropical beaches from Africa to Brazil, Central America, and the Caribbean have been inundated by
tons of sargassum seaweed from a new equatorial source of pelagic sargassum in the Atlantic. In recent years the
extraordinary accumulations of sargassum make this a nuisance algal bloom for tropical coasts. In 2018 satellite
data indicated floating mats of sargassum that extended throughout the Caribbean to the northeast coast of
Brazil with the highest percent coverage over the water yet recorded. A literature review suggests that Atlantic
equatorial recirculation of seaweed mats combined with nutrients from several possible sources may be sti-
mulating the growth and accumulations of sargassum. In the western equatorial recirculation area, new nutrient
sources may include Amazon River floods and hurricanes; in the eastern equatorial recirculation area, nutrient
sources that could sustain the sargassum blooms include coastal upwelling and Congo River freshwater and
nutrients.

1. Introduction – a new nuisance algal bloom

Sargassum seaweed has long been recognized as an important
floating macroalga ecosystem with accompanying fish, encrusting or-
ganisms and crustaceans. This brown macroalga forms floating mats in
the Sargasso Sea and is mainly composed of two species: Sargassum
natans and Sargassum fluitans (Lapointe et al., 2014; Doyle and Franks,
2015; Lapointe, 1995; Lapointe, 1986; Parr, 1939). Small bladders
filled with gas, or pneumatocysts, enable the algae to float until the mat
becomes so encrusted with other organisms that it sinks after a year or
so (Brooks et al., 2018; Gower and King, 2011). Analysis of satellite
images from 2002 to 2008 revealed that the floating sargassum mats
originated in the northwestern Gulf of Mexico each spring, probably
fueled by nutrients from the Mississippi River plume and were exported
to the Sargasso Sea during the summer months (Gower and King, 2011).
In an average year the Mississippi River discharges nearly 1.6 million
metric tons (mt) of nitrogen to the Gulf of Mexico, of which 0.95 million
mt is nitrate and 0.58 million mt is organic nitrogen (Goolsby, 2000).
This nutrient input could easily fuel the estimated one million tons wet
weight of sargassum exported to the Sargasso Sea each year (Gower and
King, 2011).

After 2011, various news reports indicated new Atlantic equatorial

nuisance sargassum weed accumulations in Caribbean areas where they
had previously never been reported (Oviatt et al., 2016). Processed
satellite images to visualize sargassum distribution between 2000 and
2010 show minimal sargassum, with occasional mats appearing off the
mouth of the Amazon River between August and October and moving
northward with the Brazil current (Wang and Hu, 2016). Beginning in
2011, tons of stranded seaweed disrupted the ecology of shallow wa-
ters, boating activities and the large tourism industry of the Caribbean
and required extensive removal efforts (Louime et al., 2017; Hinds
et al., 2016; Rodríguez-Martínez et al., 2016; Hu et al., 2016). These
new occurrences intensified with huge drifts of sargassum weed
building up to 3 m high on beaches from Grenada to St Vincent, to
Barbados to Mexico, costing the tourism industry tens of millions of
dollars in cleanup costs. In Mexico the federal government assigned
$3.2 million to sargassum removal in 2015 but the amount of seaweed
still exceeded the capacity to remove it (Rodríguez-Martínez et al.,
2016). One news report for French St Martin reported that 3 backhoes
and 5 dump trucks were required for 21 days to clean a single resort
beach and with the loss of tourists, the collective cost to the company
rose to $1,000,000 (Higgins, 2016). Similarly, coastal areas and bea-
ches along the African coasts of Sierra Leone, Nigeria and Ghana were
blanketed by sargassum for the first time in 2011, disrupting fishing
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activities and small boat navigation (Smetacek and Zingone, 2013).
During 2014–15, large amounts of sargassum stranded in the coastal
areas of northern Brazil and offshore islands from 0° S to 3° S, causing
disruptions to the local environments (Sissini et al., 2017).

Large, stranded mats of sargassum may take months to years to
decay. The stranded sargassum on the coast of Mexico has caused eu-
trophication, leaving long lasting and severe effects. For example,
seagrass meadows were replaced by Halimeda spp. and other algae
(Tussenbroek et al., 2017). Near shore corals died after sargassum
stranding caused low-oxygen events. The shallow ecosystems of corals
and seagrass meadows are not expected to recover for decades
(Tussenbroek et al., 2017). The regenerated nutrients from stranded
mats greatly exceeded the annual supply of ground water nutrients to
the coast. A year after the stranding, water transparency in parts of
coastal Mexico was still below normal levels with ongoing eu-
trophication (Tussenbroek et al., 2017).

The sargassum implicated in the recent Caribbean and Central
America beach stranding was a mixture of species and sub species in
different proportions than the two species (Sargassum natans and
Sargassum fluitans) dominating the Sargasso Sea (Schell et al., 2015).
Amaral-Zettler et al. (2016) identified the equatorial Sargassum as
Sargassum natans (form VIII) using new genetic techniques and distin-
guishing it from the two dominant Sargasso Sea species. This subspecies
has apparently always been present but rare in the Sargasso Sea and
initially dominated the tropical Atlantic recirculation area and Car-
ibbean stranding events. The equatorial species was recorded as S.
natans, during the 1930s by Taylor (1931, as cited in Szechy et al.,
2012). Taylor first reported the occurrence of S. natans in Brazil and
noted that it was outside the normal North Atlantic range. Szechy et al.
(2012) reported floating rafts of S. natans off northern Brazil on July 11,
2011, as the Brazilian Navy investigated what they thought was an oil
spill.

The question addressed in this review is: What physical factors have
changed leading to new sources of nutrients that have recently eu-
trophied the equatorial Atlantic? Floating seaweed in this region and
mass strandings on beaches in the Caribbean, Central America, western
Africa and northern Brazil indicate seasonally eutrophic conditions
during spring, summer and early fall months. Here we review several
hypotheses for sources of nutrients that promote massive nuisance
sargassum growth and biomass accumulations and examine the avail-
able literature and data for evidence to support those hypotheses. Major
sources of nutrients for sargassum blooms may include rivers (Amazon,
Congo, Orinoco), coastal upwelling (northwest Africa, southwest
Africa, equatorial), precipitation and hurricanes.

2. The new Atlantic equatorial recirculation source area of
sargassum

Several studies have described a new source of sargassum from the
equatorial Atlantic although exact transport routes and timing are being
intensively studied and improved communication connections between
eastern and western Atlantic would help to understand sargassum oc-
currence. Annually, in early spring, mats of sargassum first appear off
the coast of northern Brazil (Wang and Hu, 2017; Franks et al., 2016;
Wang and Hu, 2016; Hu et al., 2016). Over the next 3 months sar-
gassum mats off the equatorial Brazilian continental shelf are carried to
the northwest in the North Brazil/Guiana Current along the coast to
Venezuela where they are circulated in North Brazil current rings to the
east of the Windward Islands (Fig. 1) (Putman et al., 2018). Model si-
mulations of sargassum transport from the western equatorial Atlantic
explain almost 90% of the annual variability in sargassum entering the
Caribbean Sea (Putman et al., 2018). In late spring to fall of bloom
years, mats strand on Caribbean beaches. Coles et al. (2013) present
four plume schematics with the fast schematic showing an Amazon
River plume generated at the river mouth in January–March and
transported to the Caribbean in late spring and early summer, a time

consistent with observed sargassum seaweed arrival (Fig. 2). The in-
direct schematics would deliver sargassum later in the year or direct the
seaweed to the east where it might circulate and return to Brazil the
following year. Two large phytoplankton blooms in the eastern Car-
ibbean during 2009 and 2010 apparently originated from unusually
large Amazon River plumes which provide evidence of river nutrient
transport to the Windward Islands and may have been the start of flood
plumes that initiated sargassum blooms in following years (Johns et al.,
2014). Usually in June the Amazon plume joins the intensifying
Equatorial Counter Current carrying seaweed mats to the African coast
(Figs. 1, 2). Mats in the eastern Atlantic equatorial region may ex-
perience new growth with the availability of upwelled and river plume
nutrients (Brooks et al., 2018). Mats in the African Equatorial Guinea
coastal eddy circulate south to eventually join the South Equatorial
Current for transport west to the Brazil coast for the following spring
(Franks et al., 2016).

3. Are Amazon floods a new source of nutrients for sargassum?

The western equatorial Atlantic is apparently the new, unexpected
source of floating sargassum mats that strand in massive accumulations
on Caribbean beaches (Johnson et al., 2013, Brooks et al., 2018,
Putman et al., 2018, Wang et al., 2018, Wang and Hu, 2017, Hu et al.,
2016, Franks et al., 2016, Gower et al., 2013, Hu et al., 2004). The
Caribbean and western Atlantic equatorial surface waters have been
historically oligotrophic, but in 2009 and 2010, large phytoplankton
blooms in the northeastern Caribbean from Puerto Rico to Saba Bank,
were attributed to nutrients from the Amazon River plume with satellite
data indicating that such events had not happened in the past 30 years
(Johns et al., 2014). Since 2011 the Amazon flood plume appears to
have been the origin of massive blooms of sargassum which have re-
sulted in tons of sargassum seaweed on Caribbean shorelines (Langin,
2018; Marechal et al., 2017). In July 2015 monthly mean sargassum
biomass floating to the Caribbean from the western equatorial Atlantic
was estimated at over 4 million tons (Wang et al., 2018).

During Amazon River flood years beach stranding of sargassum
usually occurred (Table 1). The largest floods in Amazon River recorded
history occurred during 2009, 2011, 2012, 2014, and 2015. The floods
co-occurred with the western equatorial Atlantic increase of sargassum
seaweed that stranded on Central American and Caribbean beaches and
spread to Africa (Bowater, 2014). For example in 2012, some 500 vil-
lages, towns and cities were submerged by floodwaters at Iquitos, Peru,
causing loss of life for dozens. This flood was 90 cm higher than the
previous floods of 1938 and 1998 (Otoronogo Expeditions 2012).
During Amazon non-flood years before 2011, and 2013, 2016 and
2017, sargassum blooms and subsequent impacts to coastal beaches
were small or non-existent (Table 1). Satellite images indicate sig-
nificant floating sargassum mats in 2016 (Wang et al., 2018) but the
year 2016 has not been identified as a problem year for sargassum
stranding on beaches (Milledge and Harvey, 2016).

Studies report that the Amazon basin has been experiencing sig-
nificantly greater precipitation since the 1990s consistent with the
warming phase of the Atlantic Multidecadal Oscillation (AMO) and
global warming (Gloor et al., 2013). The AMO warming occurs during a
roughly 75-year oscillation cycle when wind and current systems al-
ternate with warming and cooling of the surface North Atlantic (Knight
et al., 2006). Warm periods occurred during the oscillation cycle from
the 1930s to the 1950s and the 1990s to present; cool periods have
occurred during the 1900s to 1920s and 1960s to 1980s (Knight et al.,
2006). The recent increasing rainfall and Amazon River floods can be
correlated with increasing tropical Atlantic sea surface temperatures.
The increase in sea surface temperature has likely caused an increase in
water vapor input from the northeast equatorial trade winds to the
northern Amazon basin. A previous Amazon River flood in 1938 may
have occurred during the previous warming period of the AMO. A step
increase of almost 1° C global warming occurred from the 1930s warm
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period to the current warm period, an increase consistent with the
greater flooding and greater storm intensity during recent years (Gloor
et al., 2013).

Could extraordinary events like the Amazon floods between 2011
and 2015 supply new nutrients to support 4 million metric tons of
sargassum (Wang et al., 2018)? Some authors do not find evidence for
this correlation (Wang and Hu, 2016). Others find that Amazon flood
nutrients have supported phytoplankton blooms in the northeastern
Caribbean (Johns et al., 2014). Generally it has been revealed that the
Amazon River has low dissolved inorganic nitrogen, mainly as nitrate
whose concentrations dilute during floods and also dilute rapidly at the
mouth of the Amazon River at ordinary flow levels (Ward et al., 2016;
Martinelli et al., 2010; Devol et al., 1995; Santos et al., 2008a;
Martinelli et al., 2006). Median Amazon River concentrations were
9 μM for NO3, 13 μM for DON and 22 μM for TDN during 1984 to 2001
(Martinelli et al., 2010). Data collected during November 2014 and July
2015 after years of boreal spring floods indicate TDN of 15 to 20 μM at

the mouth of the Amazon (Ward et al., 2016). Because the Amazon
basin has a low relief, river flows generally do not increase much over
50% during large flooding events (Fig. 3). El Niño non-flood years 2010
and 2016 had lower flows than non-flood years of 2013, 2017 and 2018
(Fig. 3) (Eltahir et al., 2004). Wang et al. (2018) report a nitrogen dry
weight percent sargassum of 1.07% or 0.107% nitrogen wet weight
sargassum. Using the recent values for nitrogen concentration (15 μM)
and flow values for all rivers (Amazon, Xingu, Tapajos) at the Amazon
mouth (205,000 m3 s−1), flow in July (a non-flood month) of 2015
could have supported ~30 million tons wet weight of sargassum com-
pared to the 4 million tons estimated by Wang et al. (2018). For per-
spective, Martinelli et al. (2006) have estimated 3 million metric tons
(3.3 million tons) of total nitrogen including about 1 million metric tons
of DIN annually exported to the coast by the Amazon River based on
pre-1999 data sources compared to ~1 million metric tons N per year
for the calculation above.

While the Ward et al. (2016) value (15 to 20 μM TDN) approximates

Fig. 1. Current boundaries of the equatorial Atlantic sargassum seaweed recirculation area. The arrows indicate dominant directional flow of the circulating currents.
The northern boundary of the recirculation area is the North Equatorial Current (NEC); the southern boundary is the South Equatorial Current (SEC). The re-
circulation is due to the Brazil Current Rings (BCR) of the Brazil Current (BC) and the seasonal Equatorial Counter Current (ECC) moving from the eastern boundary
of the recirculation area to the coastal African current at the western boundary. Major nutrient sources include Rivers (Amazon (A) at the equator and Orinoco (O) on
the west, Congo (C) 6°S in the east), Upwelling (North West Africa (NWAU), South West Africa (SWAU), equatorial), and Hurricanes. Windward Islands (WI) lie to the
northwest. (Map from Google Earth accessed December 2018).

Fig. 2. Float drifters transport pathways with months of initiation noted and percentage of drifters that follow each pathway.
(Used with permission of Coles et al., 2013, Fig. 6d, AGU publisher.)
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the required nitrogen to support observed sargassum biomass it is not
clear why the non-flood year 2013, with roughly equivalent flow and
nitrogen concentrations should not also support large sargassum bio-
mass (Fig. 3). It is also not clear how such a large sargassum biomass
could accumulate in the western equatorial Atlantic without a large
input of nutrients from a source like the Amazon River, just as the
Mississippi River apparently supplies nutrients to sargassum species in
the Gulf of Mexico (Brooks et al., 2018; Gower and King, 2011).

An explanation for making new flood nutrients available may lie in
the physical timing of flood events and the location of the Intertropical
Convergence Zone. The mats that arrive off the coast of Brazil in
February apparently predict the summer Caribbean large-scale seaweed
beach strandings (Wang and Hu, 2017). The Amazon River flowing at
Obidos, Brazil, in early January, would reach the continental shelf in
late February (Korosov et al., 2015). January flows are higher in flood
years compared to non-flood years and may push out earlier than in
non-flood years to the shelf edge to encounter floating mats (Fig. 3).
During January, February and March the Intertropical Convergence
Zone brings high precipitation to the western Atlantic equatorial region
at the mouth of the Amazon depositing Saharan dust containing iron
and nutrients (Wang and Hu, 2016; Swap et al., 1992; Schlosser et al.,
2014; Paerl et al., 1999). The reduced salinity may retain the nutrients
in the surface waters where it is available for seaweed growth. From
November to early spring the equatorial counter current does not run

eastward creating a quiet area of no currents where sargassum mats
may accumulate and grow (see Wang and Hu, 2016). The mats may be
left over from the previous year's bloom and re-growing (Wang and Hu,
2016) or new mats from the eastern equatorial Atlantic portion of the
recirculation area (Brooks et al., 2018; Franks et al., 2016). Mats
moving from the east have not been observed as satellite coverage has
only been applied in the western equatorial Atlantic. Higher plume
flows and the Brazil Current in later spring sweep the mats to the
Caribbean (Putman et al., 2018) (Figs. 2, 3). Concurrent data on flow,
salinity and nutrient concentrations at the mouth of the Amazon River
have not been available to test these hypotheses.

In addition to nitrogen inputs from Amazon River flow, a large pool
of dissolved organic nitrogen forms at the mouth of the Amazon River,
perhaps derived from sediment organic matter (Gensac et al., 2016).
Santos et al. (2008b) report minimum, maximum and median con-
centrations of DON at sites on the Amazon continental shelf of 39, 168
and 85 μM, respectively, during a decreasing discharge period. The data
were collected long before the development of sargassum blooms, in
August 2001, from 41 stations located on the inner shelf at the mouth of
the Amazon from latitude −1 to 4.5° and longitude −48 to −51°.
Presumably these concentrations of DON would be higher in flood years
when more organic materials are deposited than in non-flood years
although no measurements were taken to confirm this supposition.

Several researchers have performed experiments indicating that
dissolved organic nitrogen substrates were readily taken up by macro-
algae and Sargassum sp., in particular (Vonk et al., 2008; Van Engeland
et al., 2011). Hanisak and Samuel (1987) found high growth rates for
pelagic species S. fluitans and S. natans as well as benthic Sargassum
species under favorable light, temperature and nutrient conditions.
Both pelagic species attained rates of 0.11 doublings per day and per-
formed best at higher light, salinity and temperature conditions than
benthic species required. Vonk et al. (2008) found that benthic Sar-
gassum sp. uptake rates of dissolved organic nitrogen substrates, in-
cluding urea, exceeded the rates of all other macroalgae and seagrass
blades. DON is likely a utilizable source of nitrogen in nutrient limited
waters for sargassum just as it is for phytoplankton (Bronk et al., 2007;
Glibert et al., 2006; Seitzinger et al., 2002). Urea has been identified as
a major agricultural fertilizer for sugar cane and corn and as a new
contributor to coastal eutrophication (Glibert et al., 2006). Glibert et al.
(2006) showed that Brazil was a major user of urea fertilizer from 1999
to 2000, using from 500,001 to 15,000,000 metric tons/y. Urea was
identified two decades ago at the mouth of the Amazon, but at low
concentrations of ~1 μM (Demaster and Pope, 1996). Concentrations
which may now be higher, have not been reported.

4. Could Atlantic hurricanes be a factor for sargassum distribution
and growth?

So far, the research community has not examined hurricanes, as a
source of a new dominant sargassum subspecies and of nutrients for
sargassum growth. These powerful and intensifying storms can change
circulation and ranges of species, upwell deep water column nutrients,
destroy biological communities and be a long lasting source of nutrients
to surface water sargassum. The following speculations are correlative
only, but suggestive.

Hurricanes may have led to the inoculation of Sargassum natans (form
VIII) seaweed into the Central West Atlantic. Before 2010 only phyto-
plankton bloomed in Amazon flood plume waters (Johns et al., 2014).
The 2010 hurricane season had 12 storms and was the first of 3 very
active hurricane years between 2010 and 2012 (https://en.wikipedia.
org/wiki/2010_Atlantic_hurricane_season). Hurricane Tomas, a low lati-
tude storm originating off the coast of west Africa and moving to Brazil
and the Amazon River mouth, swept through the Windward Islands in
late October 2010 with highest wind speeds of 155 km h−1 (Fig. 4). The
storm brought heavy rainfall and strong wind gusts across the Windward
Islands, Venezuela and northern Guyana before developing into a

Table 1
Years of Sargassum beaching and the available nutrient sources.

Year Amazon
river flood
nutrients

Hurricane
nutrients prior
year

Eastern Atlantic
equatorial
nutrientsa prior
year

Excessive Sargassum
beaching

2009 Yes No No, Phytoplankton
Bloom

2010 No, El Niño No No
2011 Yes Yes Yes
2012 Yes Yes Yes
2013 No Yes Yes, Congo Flood No
2014 Yes No Yes
2015 Yes Yes Yes
2016 No, El Niño Yes No reports
2017 No No Yes, SEC No reports
2018 No Yes Yes
2019 ? El Niño No ? No

a SEC - South Equatorial Current and upwelling wind along coastal Africa.
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Fig. 3. Amazon flow levels during the flood periods from 2009 to present at
Óbidos, Brazil. MJ is May–June.
(Brazil River Agency: Agencia Nacional de Aguas: http://www3.ana.gov.br/
portal/ANA/portal-ingles/information, accessed Dec. 2018.)
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hurricane. Could this hurricane have injected Sargassum natans (form
VIII) seaweed into the Brazil and Equatorial Counter Currents to initiate
the first bloom in 2011? Could such a hurricane shift pools of coastal
nutrients, for example, from the mouth of the Amazon River, to sar-
gassum mats?

In any year several tropical storms and hurricanes pass through the
western tropical Atlantic. The storms, mixing water to depths of tens of
meters, bring cold, nutrient rich water to the surface (Gierach and
Subrahmanyam, 2008). When 2017 Hurricanes Irma and Maria passed
through on September 7 and 20, surface water temperatures dropped by
about 1 °C in the coastal waters of St John USVI (National Park Service
Monitoring Data, J. Miller, 2019 pers. comm.). Hurricane circulation
may transport upwelled nutrients and materials remineralizing nu-
trients into the area east of the Windward Islands, where they may
recirculate for 6 months in Brazil Current Rings (Putman et al., 2018)
(Fig. 1). The quiet region and concentrated nutrients would support
sargassum accumulation, growth and blooms in the western equatorial
Atlantic in the following spring (Putman et al., 2018).

Large sargassum beaching years have usually been preceded by
strong hurricane seasons (Table 1). Satellite data indicate large percent
coverage of sargassum and hurricanes in the previous fall in 2011,
2012, 2015 (Wang and Hu, 2016) and 2018 (University of South
Florida: optics.marine.usf.edu, Langin, 2018). Both 2013 and 2016
were minimal years in terms of hurricanes compared to other years
when one or more major hurricanes impacted the area (https://www.

nhc.noaa.gov/data/tcr/, accessed November 2018). The lack of sar-
gassum in 2013 has been attributed to strong eastward flow of the north
Brazil current retroflection to the Equatorial Counter Current in 2012
(Putman et al., 2018) although 2013 and 2016 were also years of no
Amazon River floods (Table 1).

Two category 5 hurricanes (Irma, Maria) and several smaller storms
in the western tropical Atlantic in the season of 2017 comprised a suite
of extreme events for the Caribbean due in part to above average sea
surface temperatures (Fig. 5, Camp et al., 2018). The 2017 hurricane
season was one of the most active since reliable records began in 1966
with 6 major hurricanes and with the third highest accumulated cy-
clone energy on record (Camp et al., 2018). The Amazon River did not
flood in 2018 but this year had the highest sargassum percent coverage
and beach stranding yet recorded (Langin, 2018). The hurricanes mixed
tropical waters to depth and caused tons of terrestrial vegetation to be
exported to the ocean (Fig. 6a). Settled and suspended particulate
matter formed a mat of regenerating nutrients for several months after
the storms (Fig. 6b). Levels of benthic macroalgae were the highest ever
recorded at these sites for months after the passage of the storms
(Fig. 6b). News reports from Barbados indicated that the storms caused
home septic systems to malfunction due to hydraulic loading of soils.
The storms flooded waste water systems and released nutrients from
several islands. All these sources of nutrients possibly contributed to
sargassum growth in the spring and summer of 2018. News reports
indicate high nitrate loads in Puerto Rico streams a year after Hurricane

Fig. 4. The track of Hurricane Tomas (red is hurricane intensity) October 29 to November 7, 2010. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
(Map modified from Pasch and Kimberlain, 2011.)
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Maria which could lead to lasting coastal eutrophication (https://www.
forbes.com/sites/marshallshepherd/2018/12/10/the-startling-thing-
hurricanes-are-doing-to-puerto-rico-watersheds/#56e090fb6604).
Wynne (2017) has reported that recirculating currents in the northern
Caribbean may be trapping nutrients and allowing them to accumulate

around the Windward Islands contributing to coastal eutrophication in
island areas.

A further source of nutrients could have been the August 2018
Orinoco River floods that may have prolonged the summer beaching of
sargassum seaweed (https://www.caracaschronicles.com/2018/08/
27/orinoco-river-floods-ciudad-bolivar-refugees-have-nowhere-to-go/,
Accessed August 2018). The Orinoco River has an average discharge of
36,000 m3 s−1 and concentrations of dissolved inorganic nitrogen of
8.1 μM and of dissolved inorganic phosphorus of 0.3 μM, with a total
nitrogen export of 0.54 × 106 metric tons per year (Lewis and
Saunders, 1989). During a summer flood period significant nutrients
could be exported to Caribbean waters (Johns et al., 2014).

5. Nutrient sources in the eastern equatorial Atlantic

Nutrient injections in the eastern Atlantic recirculation area could
provide new growth to floating sargassum mats for the trip back across
the Atlantic to Brazil staging grounds (Fig. 1). Three sources of nu-
trients in the eastern equatorial Atlantic recirculation area include the
Canary Current and the Benguela Current that carry nutrients from
coastal African upwelling areas, and the Congo River plume at 6°S
(Fig. 1, da Cunha and Buitenhuis, 2013). Upwelling systems in the
eastern Atlantic recirculation area are the most important sources of
nutrients, followed by seasonal upwelling events in the Gulf of Guinea.
In the Gulf of Guinea, upwelling and freshwater conditions create a
stable mixed layer that traps nutrients in a water column of longer
residence time to which the Congo River also contributes nutrients (da
Cunha and Buitenhuis, 2013).

Alternating floods, in the west and east equatorial Atlantic may have
acted to sustain sargassum mats past a one-year life cycle in 2013
(Table 1). Typically, Congo River floods occur before or after Amazon
River floods in a seesaw fashion (Elatahir et al. 2004). A flood in the
Amazon correlates with decreased rainfall in the Congo and vice versa;
El Niño floods in the central Pacific correlate with drought in Amazon
and Congo watersheds (Eltahir et al., 2004). Thus, the Amazon flood of
2012, was followed by the 2013 Congo River flood (Spencer et al.,
2016; Becker et al., 2014). The Congo River flow is small compared to
the Amazon River and averages 38–41,000 m3 s−1 with dissolved in-
organic nitrogen levels of 14 μM to 37 μM in high and low water, re-
spectively (Descy et al., 2017; Spencer et al., 2016; Tshimanga et al.,

Fig. 5. Hurricanes Irma and Jose September 6, 2017.
From earthobservatory.nasa.gov.

Fig. 6. Hurricanes in 2017 stripped vegetation from Caribbean Islands a. and
this exported organic material formed an easily suspended and settled layer
about 10 cm deep over the bottom b.
(J. Miller, US National Park Service, US Virgin Islands, public domain.)
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2016). Thus the Congo flood of 2013 may have enhanced the growth of
sargassum during the cross Atlantic transport of sargassum to the Brazil
Current and the Caribbean beach strandings of 2014 (Wang and Hu,
2017).

Processes within the equatorial Atlantic that might lead to new
nutrient injections include wind induced coastal upwelling in the
northeast Canary and southeast Benguela currents, north and south
equatorial currents and enhanced eddy circulation (Wang and Hu,
2016). However, there is no evidence that these processes have been
enhanced during the period of sargassum blooms. Trade wind in-
tensities during the negative North Atlantic Oscillation tend to be
lighter than during the positive NAO period from 1970s to 2000
(George and Saunders, 2001). A positive NAO leads to stronger trade
winds, enhanced wind-induced latent heat flux, tropical north Atlantic
sea surface temperature cooling, and lower tropical north Atlantic at-
mospheric moisture content (George and Saunders, 2001). Thus wind
intensities and eddy intensities are currently weaker than in the decades
of the positive NAO. Unusual event years such as 2017 discussed below,
can happen at any time but on average upwelling and eddy circulation
nutrient sources would be expected to have not changed or in fact,
would be less now than those sources were in the late 1900s before
sargassum blooms occurred.

Nutrients associated with Benguela upwelling in 2017 may have
contributed to the growth of sargassum before transport west to Brazil
in early spring 2018 (Table 1). Benguela upwelling winds in 2017 were
65% and 77% more intense than in 2016 and 2018 (Fig. 7a, b). The
stronger winds of 2017 would have resulted in nutrient upwelling from

a deeper mixed water layer than the other two years in this location.
The upwelled nutrients may have been concentrated in the stable
shallow freshwater Congo River plume. These nutrients may have
sustained and contributed to the largest sargassum seaweed bloom yet
during the non-Amazon flood year of 2018. Strong upwelling winds do
not appear to be present during the period of sargassum blooms in the
Northeast equatorial current (Fig. 7b).

6. Summary: nutrient sources of the equatorial Atlantic

Several potential equatorial sources of nutrients have been identi-
fied that require new studies to confirm their potential contribution to
stimulating sargassum growth. The major eastern nutrient sources for 2
of the 5 sargassum bloom years include African coastal upwelling and
the Congo River (Table 1). Nutrients in the eastern equatorial Atlantic
may sustain seaweed mats for a new life cycle and trip back across the
Atlantic to support a bloom in the following year (Fig. 7). In the western
equatorial Atlantic, new nutrients from Amazon River floods and hur-
ricanes may have initiated seaweed blooms during 5 of the years be-
tween 2009 and 2019 (Table 1). The extraordinary biomass of floating
sargassum since 2011 is correlated with Amazon flood years and hur-
ricane years where hurricanes occur in the year previous to the bloom.
The extreme intensity of flood events and hurricanes may be due to
climate warming combined with the warm cycle of the AMO (Gloor
et al., 2013; Camp et al., 2018; Webster et al., 2005). Sargassum can
bloom without hurricanes as in 2014 when no hurricanes occurred in
the previous year (Table 1). If the Amazon River is the major source of
nutrients initiating sargassum blooms, sargassum growth might be ex-
pected to decline as the warm phase of the north AMO has declined
(Vogan, n.d) and Amazon floods have decreased. Instead satellite data
show the largest seaweed percent coverage to date occurred during the
2018 non-Amazon flood year but after the extraordinary Caribbean
hurricane season of 2017, posing the possibility that hurricanes,
without an Amazon flood, may promote sargassum blooms (University
of South Florida, n.d).

With no hurricanes and no Amazon flooding, sargassum may fail to
bloom although blooms seem to occur in the absence of identified
eastern equatorial nutrients (Table 1). The case example for this sce-
nario is the year 2016 when satellite images predicted a significant
sargassum bloom (Wang and Hu 2018). However, no significant hur-
ricanes occurred in 2015 in the western Atlantic and because it was an
El Nino year, no Amazon flooding occurred in 2016 (Table 1). Sig-
nificant sargassum beach stranding was not reported in 2016 (Milledge
and Harvey, 2016). Could the 2016 satellite images show sargassum left
over from 2015 that failed to re-bloom and later sank (e.g. Wang and
Hu, 2016)? If major new nutrient sources fail in a given year, little or no
sargassum may bloom such as, in the pre-2011, 2013, 2016, 2017 and
potentially 2019 (no 2018 hurricanes, El Niño correlates with no
Amazon flooding) seasons (Table 1).

The Caribbean Regional Fisheries Mechanism (CRFM) has estimated
the sargassum clean-up costs for the Caribbean in 2018 at $210 million
causing severe impacts on regional economies and indicating the need
for more information on the massive sargassum beaching events. Future
research, focusing on obtaining data to investigate Amazon floods and
hurricanes as possible new sources of nutrients subsidizing sargassum
blooms in the western Atlantic region and subsequent sargassum de-
position on tropical coastlines, could benefit preparedness planning and
mitigation strategies.
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