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Sargassum is a genus of brown macroalgae (Phaeophyceae,
Fucales) spread worldwide in tropical, subtropical, and tem-
perate environments. All Sargassum species are benthic ex-
cept for two pelagic ones: Sargassum natans and S. fluitans,
previously confined to the Gulf of Mexico and Sargasso Sea
and now drifting on the surface of the tropical Atlantic Ocean
where they accrete together into windrows of floating thalli,
ranging in size from large patches to rafts of several hundred
metres in length (Ody et al. 2019). Climate events (hurricanes,
rises in seawater temperature) and sea current events (anoma-
lies in surface currents) could spread them onshore, but those
algae have never been reported significantly elsewhere.
However, since 2011, large beaching events have been occur-
ring on the shores ofWest Africa (Sankare et al. 2016) and the
Greater Caribbean (Langin 2018). Initially episodic, such
beachings are tending to become increasingly frequent and
massive, due to an unexpected location of growth in front of
the Amazonian Mouth (Johns et al. 2020). The hypotheses
proposed to explain this are a link with some cause within

the raft (Lapointe et al. 2014), the deforestation of inner
Amazonia, and/or African coastal mangroves or the expansion
of the Sahara (Sissini et al. 2017; Oviatt et al. 2019; Wang
et al. 2019). The large volumes involved show a trend of
yearly increase and can be expressed in millions of tons of
algae that have drifted to shores, leading to severe impacts on
the environment and human health: Sargassum pile up on the
shore, then decay, producing foul and corrosive hydrogen
sulphide, and depleting oxygen in water; colloidal bleed is
also observed (Perry et al. 2018). Such events have
overwhelmed public authorities and endangered economic ac-
tivities, mainly in the tourism sector and port industries and
infrastructures. Sargassum is also described as a “health issue”
by France’s regional health agencies, because it now repre-
sents a real threat to human health. Several French doctors
have already sent out alerts on this problem through a publi-
cation (Resiere et al. 2018). They confirm that there is a press-
ing need to discuss this matter at an international level with a
view to boosting marine research, pooling resources, and con-
solidating local political priorities. Between January and
August 2018, health professionals reported 3341 cases in
Guadeloupe (West Indies) and 8061 cases in Martinique
(West Indies), of which three patients were admitted to inten-
sive care. Otherwise, beaching consequences are currently
under intensive study as macroscopic pollution. However,
Sargassum beachings pose another more insidious threat.
Until now, arsenic concentration in geochemical backgrounds
of the Caribbean islands has generally been low, but Michel
(1985), Muse et al. (1989), Neff (2002), Pell et al. (2013), and
Devault et al. (2019) have highlighted that the Sargassum
content of arsenic gives cause for concern: arsenic (As) is a
notorious toxic metalloid. Naturally present in soils and water,
arsenic is commonly found in sulphide-bearing mineral de-
posits mainly associated with gold, antimony, silver, lead,
copper, tin, zinc, and iron minerals. Amongst the three other
valency states of As (As-3, As-III, and As-V), As-3 is found
only at extremely low redox values, i.e. in highly-reducing
environments (Moore and Ramamoorthy 1984). Arsenite
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As-III is dominant in reducing environments, and arsenate As-
V prevails in oxidising conditions: As-III and As-V are ob-
served in marine conditions, with As-V being more common-
ly reported because the oxidising environment is more com-
mon than the reducing one (Sadiq 1990; Anderson and
Bruland 1991a, b; Francesconi and Edmonds 1998; etc.).
Above all, arsenic is a Va group element and is related to other
Va group elements (e.g. antimony and phosphorus): its behav-
iour in the environment is close to that of phosphorus (Neff
2002), leading As to compete with phosphorus for adsorption
sites (Neff 1997). Arsenate can be assimilated by algae in the
As-V oxidation state through phosphate transporters, as de-
scribed by Bouain et al. (2014), owing to its physicochemical
similarities with P (H2PO4

− versus H2AsO4
−) (Taylor and

Jackson 2016), leading to a subsequent decrease of phospho-
rus in the tissues of algae receiving rising concentrations of
As(V). Arsenate is predominant in organic aqueous and aero-
bic environments and is strongly adsorbed on to the surface of
several aquatic organisms and oxidised minerals of Fe, Mn,
and Al (Al Mamun et al. 2018 and 2019), including inner iron
plaques in Sargassum. But mobilisation via reduction process-
es can occur in the water column or sediments. Previous stud-
ies have highlighted that the average concentrations recorded
for floating Sargassum thalli range from 80 to 140 mg/kg of
the dry weight (dw) of the alga (Michel 1985; Devault et al.
2019): no explanation has yet been found for such variations.
Given the mean concentration in arsenic, assessing the total
amount of stranded Sargassum on a given territory requires
considerable resources that have not yet been utilised for a
whole episode. However, a one-shot complete assessment
performed on September 27, 2014, in Martinique (West
Indies) during an airborne survey concluded that there was a
total amount of 34,000 m3 of fresh floating Sargassum con-
tiguous to the shoreline. Considering an average of 250 kg/m3,
31% dry weight rate, and an arsenic concentration of
80 mg/kg (dw), the total influx of arsenic was about 210 kg
in only a few days. Despite variations in time and intensity, the
Martinique shoreline has experienced a total of 37 months of
heavy stranding episodes since 2011. In theory, this has led to
several tons of arsenic spread along the exposed coastline of
the island due to Sargassum beaching. Occurring year after
year, is it possible for this influx to contaminate biota? In other
words, is this arsenic bioavailable?

When Sargassum thalli are massively accreted in shallows
or on floating dams in stress conditions (which have to be
defined more precisely), they transudate—a phenomenon that
is visible to the naked eye. Such transudation has scarcely
been studied (de Carvalho et al. 1994; Figuiera et al. 2000;
Davis et al. 2004; Veit et al. 2014; and more recently, Perry
et al. 2018), but has been identified as colloidal leaks. The
phenomenon has never been evaluated quantitatively, and in-
direct data show a range from 1.6 to 49% of dried biomass
(Veit et al. 2014 and Figuiera et al. 2000, respectively)

depending on the species studied and how the biomass is
handled. Ender et al. (2019) propose that the bulk of the arse-
nic is adsorbed on the cell walls due to the polysaccharides
that structure the cell wall of brown algae, therefore due to the
alginate content. If oceanic streams do not drift the raft west-
ward into the Caribbean Sea, stressed Sargassum sink and
their decaying close to the sediment produces a mud close in
density to fluid mud (as defined by Thouvenin et al. 1994;
Abril et al. 2003, 2004); the fate of arsenic content in fluid
mud is unknown, including its speciation in the more toxic
As-III, but arsenic input may be expected to be mostly
bioavailable.

Moreover, the Caribbean population traditionally eats bi-
valves, which are known for filtering high volumes of seawa-
ter and for bioaccumulating micropollutants. The average fish
and other seafood consumption is apparently well below the
world average (8.96 versus 18.98 kg/capita/year) (Faostat
2013), probably also because shellfish and especially bivalves
are not a traditional element in the diet of Caribbean peoples
(Josupeit 2011). However, bivalves are widely targeted by the
subsistence coastal fisheries in the Caribbean. Local artisanal
fisheries play a significant role in the livelihoods and
food security of more than two million people (de
Oliveira Leis et al. 2019). Many healthcare professionals
are seeing an increase in consultations with local popu-
lations due to the effects of chronic exposure to hydro-
gen sulphide (Resiere et al. 2018). However, the health
consequences of long-term exposure to arsenic from bi-
valves remain poorly documented and impede hospitals
from understanding this reality. This value can reach
more than 5 mg/kg (dw) (Sloth et al. 2005), but as
Francesconi (2010) and Zmozinski et al. (2015) have
demonstrated, trimethylated arsenobetaine dominates
quantitatively in the multiple arsenic species in seafood
due to arsenic speciation. Amongst the tri- and tetra-
methyl As forms, including arsenobetaine, arsenic toxic-
ity varies according to the degree of methylation: in
decreasing order, MMA(III) and DMA(III) > arsenous
acid (As(III)) > As acid or arsenate (As(V)) >>
monomethylarsonic acid (MMA(V)) ≈ dimethylarsinic
acid (DMA(V)) > trimethylated species (arsenobetaine
(AsB), etc.) (Geng et al. 2009).

Arsenobetaine is known to be slightly toxic (LD50 ≈
10 g/kg), but the other forms have acute LD50 of 5–100mg/kg-

body: with chronic tolerance daily intake (TDI) for inorganic
arsenic of 0.45 μginorganic As/kgbody/day, 27 μg/day is a sani-
tary threshold following the international standard for an adult
(60 kg). TDI for organic species is not known, partly because
data for MMA(III) and DMA(III) are scarce, and partly be-
cause the other organic species of As-V are slightly toxic.
During beaching events, bioavailable arsenic accumulation
is not studied, nor the conversion of the seaweed arsenosugars,
and the time needed to turn input of inorganic arsenic into
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arsenobetaine needs to be determined, at least to estimate the
duration between the Sargassum beaching and re-entry to the
harvesting site.

The challenge is compounded by the lack of knowledge
about arsenic speciation and bioavailability and about coastal
streams inducing dilution and drift. However, year after year,
arsenic contamination will be maintained by the increasing
beached volumes. Such a concern has to be solved at an inter-
national scale due to the extent of the problem, but collabora-
tion at the scale of beaching events, i.e. alongWest Africa, the
USA, and the Caribbean basin, is in its infancy. At the local
scale, arsenic concern is ignored by most stakeholders and the
governance is not aware of it, except for the French West
Indies; yet even for the FWI, there is room for improvement
and scientific means must be mobilised. In particular, caution
must be exercised with regard to the use of stranded
Sargassum biomass by local populations.
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