

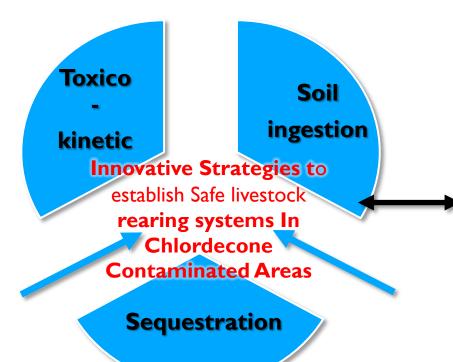
SARGASSUM VALORIZATION BY PYROLYSIS - APPLICATION FOR FOOD SAFETY

Sarra Gaspard, Université des Antilles, Laboratory COVACHIMM2E

The consortium

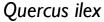
Partner	Research Unit	Name	Role	Expertise				
1 ar tiler	COVACHIMM2E	Pr Gaspard	LPI*	Environmental chemistry –				
	COVACIMINIZE	Dr Yacou	member	Activated carbon – Energy				
		Dr Jeanne-Rose V.	member					
				storage				
		Dr Passe-Coutrin	member					
	UMR ECOFOG	Jean-Marius Dr Dulorme	Member PPI*	Plant acaphysialogy				
	OMK ECOPOG	Dr Dulorme		Plant ecophysiology				
			Member					
UNIVERSITY	LARGE	Pr Soubdhan	PPI*	Energetic and process				
OF ANTILLES	60500L	5 M		engineering				
	CREDDI	Pr Maurin	PPI*	Economic modelling				
		Dr	member	Economic analysis				
		Mathouraparsad	member	Social sciences				
		Dr K Lanneau	member					
		F Navis						
	UMR ISYEB	Pr. O. Gros	PPI*	Soil mesofauna and macrofauna				
		Dr Loranger-	Member	Marine biology				
		Merciris						
UNIVERSITY	UR AFPA - INRA	Pr Rychen	LPI*					
OF		Pr C Feidt	member	POP transfer food chain				
LORRAINE		Dr Delannoy	member					
INRA	ASTRO	Dr Richard	PPI*	Environmental Chemistry /				
		Dr Tournebize	Member	pedology / Agronomy				
NST	NST	Dr M. Ugolin	PPI*	Activated carbon production				
		Dr N. Ugolin						
ARS – IREPS	ARS-IREPS	M Thalmensi	PPI*	Food safety				
		M Bocharel	member					
		Mme Batoul	member					

Results of ANR project INSSICA



2016-2021

Modeling efficient strategies


Ensure social acceptability

Assessing the retention of CLD during digestive processes of piglets after amendment of soils with biochars or ACs

Nuciféra

Commercial ACs

Precursors Pyrolysis
Activation

fluitrans

- Production of biochars and ACs
- Characterization

Design

In vitro

- **Sorption** assessment of CLD by ACs and biochars
- In vitro assays of soil amendment strategy

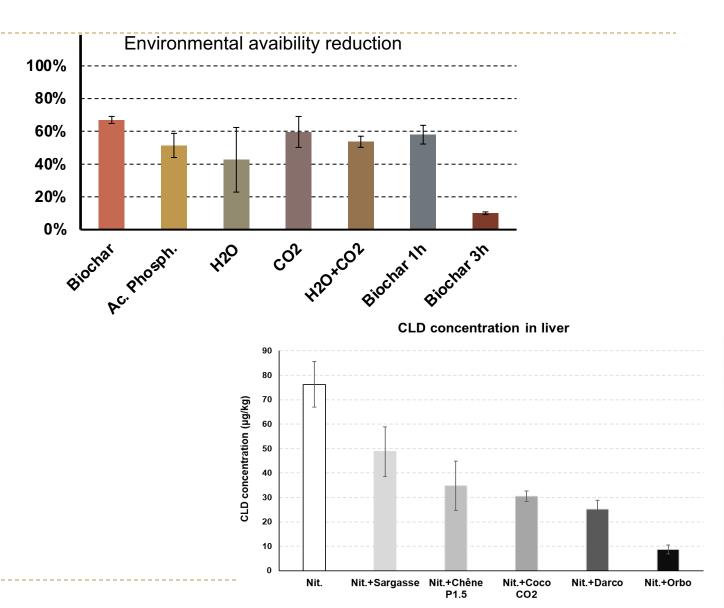
 Ex vivo assays of CLD transfer

Ex vivo

In vivo

 In vivo assay of CLD transfer

International Joint call on Sargassum, 19/10/24

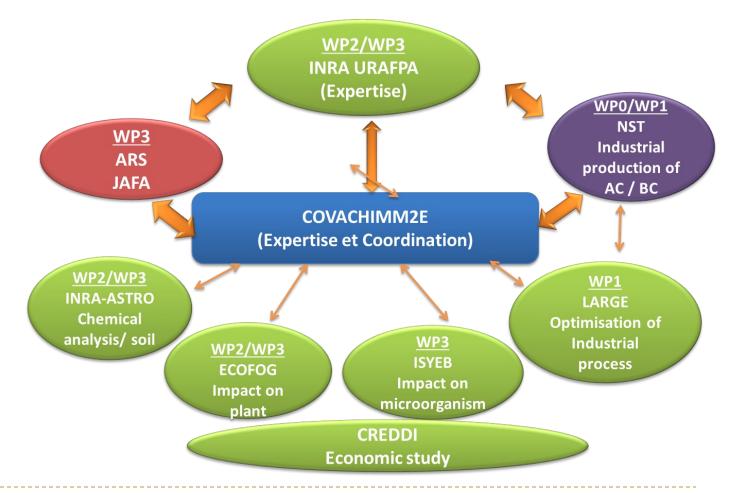


Background

Fig. Concentrations of CLD in liver (μg of CLD per kg of DM).

- Characterize raw sargassum and carbon materials produced
- Assess the sequestration ability of the produced BC/AC with the aim to avoid organochlorine pesticides transfer either to vegetables entering the food chain or food producing animals at laboratory
- amend organochlorine pesticides contaminated areas, in close relation with garden owners (JAFA program), with the best BC/AC candidates
- Evaluate from an economic point of the view the macroeconomic impact since the territorial issues have to be faced. Evaluate the driving effect of a biochar/activated carbon sector (including collection activity) on the rest of the economy




Research questions addressed

- Properties of AC and biochar and synthesis method for producing at laboratory scale efficient material for pesticide sequestration
- Production method at industrial scale of optimized AC and BC with the solar micro-wave, **SMO**® process of NST
- Quality the sargassum precursor and of carbon materials produced
- Impact of these materials on plants, soil macro-fauna, and microorganisms?
- How to amend the soil for optimizing pesticide sequestration?
- What is the economic impact of the setting up of this new sector - driving effect?

Management of the project

International Joint call on Sargassum, 19/10/24

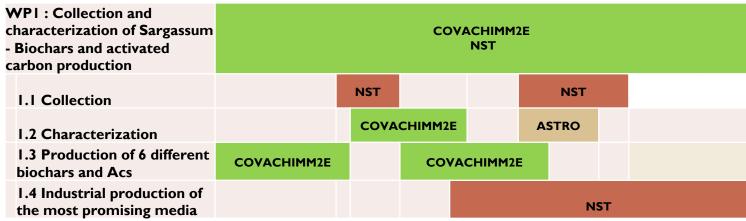
WP0 - Coordination

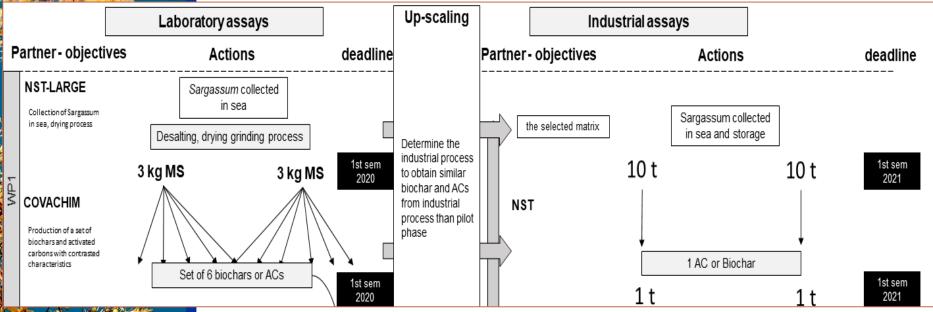
COVACHIMM2E / URAFPA

WP0.1. Coordination of meetings between partners Kick-off, mid-term, final meetings

WP0.2. Steering committee with stakeholders

WP0.3. Coordination of the publication process, reports writing




WPI. - Collection and characterization of Sargassum - Biochars and activated carbon production and characterization

NST/ COVACHIMM2E/ASTRO/ECOFOG

- WPI.I. Collection and characterization of Sargassum
- WP1.2. Biochars and activated carbon production and characterization
- WP1.3. Industrial production of the most promising media
- WP1.4. Innocuity assessment and treatment of the Sargassum as precursor and of carbon materials

WP2 - Pesticide residues sequestration by Sargassum biochars and activated carbons and innocuity assessment on soil microbiota, plant and animal

COVACHIMM2E / URAFPA / ASTRO / ECOFOG

WP2.1. Environmental availability assays

WP2.2. In vivo validation: Relative Bioavailabilty assays

WP2.3. Effect of AC and BC on the pestides transfert between soil to plant and innocuity

WP3: In situ demonstration of pesticide residues sequestration ensuring safety of food products

URAFPA ARS-IREPS INRA ECOFOG ISYEB

Soil Type A	Soil Type B					
Selection of 3 distinct garden locations of this soil type	Selection of 3 distinct garden locations of thi soil type					
- Garden A.1	- Garden B.1					
- Garden A.2	- Garden B.2					
- Garden A.3	- Garden B.3					

6 tested gardens of 2 soil types from Guadeloupe (JAFA program – ARS/IREPS)

Scheme of an experimental garden

Sub-areas of 4m2 amended or not by 2% of the most promising matrix. 2 assays performed :

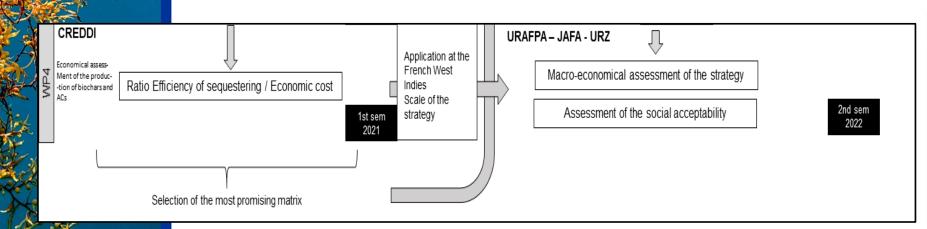
(1) laying hens and (2) transfer to vegetable with environmental availability assay

Soil Type A	Soil Type B					
Selection of 3 distinct garden locations of this soil type	Selection of 3 distinct garden locations of this soil type					
- Garden A.1	- Garden B.1					
- Garden A.2	- Garden B.2					
- Garden A.3	- Garden B.3					

6 tested gardens of 2 soil types from Martinique (JAFA program - ARS/IREPS)

- WP3.1 Identification of contaminated sites
- WP3.2. Sampling of contaminated soils
- WP3.3. Preparation of amended soils
- WP3.4 in vivo validation of sequestration
- WP3.5. Innocuity assessment on plants and microorganisms

WP3 :Assessment of innocuity and efficiency of biochars and Acs	ARS IREPS, URAFPA, INRA, ECOFOG											
3.1 Identification of contaminated sites		AR IRE				ARS-IREPS						
3.2 Sampling of contaminated soils		AR: IRE										
3.3 Preparation of amended soils				ARS				ARS				
3.4 in vitro assessmbent of sequestration					URAFPA				URA	JRAFPA		
3.4 in vivo validation of sequestration							URAFPA			URAFPA		
3.5 innocuity assessment on soil plants and microbiota					ECO	FOG	ASTR	O			ISY	ЕВ


WP4: Macroeconomical impact of the selected amendment strategy

CREDDI

WP4. I Assessment of the social acceptability and the associated costs

WP4.2. Production of discontinuous supplies

WP.4.3. Impact analysis of the use of activated carbon

Results expected

Process for producing BC and AC for pesticides sequestration at industrial scale

Impact of AC and BC amendment on soil biodiversity

Sequestration of pesticide on poultry for reducing amount of pesticide in eggs

Procedure for soil amendement for reducing pesticide bioavaibility and to improve food safety

Added value/dissemination/perspective for development

Added value

Implementation of a new economic sector Technico-economic analysis of carbon production Creation of new jobs

Dissemination

Design and development of the project visual identity, Communications to scientific, technical, environmental, general public.

Project results after the end of the project to persons and organisations that could best make use of them

Perspective of development

Carbon materials for other applications

THANK YOU FOR YOUR **ATTENTION**